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CHAPTER —_—

Linear Algebra

S — e —
e ———————————————

’ 1.1 INTRODUCTION

Linear Algebra i a branch of mathematics concerned with the study of vectars, with familias of
veclors called vector spaces o linear spaces and with functions that input one vector and output
another, according 1o cartain rules. These functions are called linear maps or linaar transformaticns
and are often represented by matrices. Matrices are rectangular arays of numbers or symbals and
matrix algebra or linear algebra provides the rules defining the operations that can be formed on
such an object.

Linear Algebra and matrix theory occupy an impartant place in modem mathematics and has
applications in aimost all branches of engineering and physical sciances. An elemaentary application
of near algebra is to the solution of a system of linear aquations in several unknowns, which ofien
racult when linear mathematical models are constructed 1o represant physical problems. Nonfinear
models can often be approximated by linear ones. Other applications can be found in computer

graphics and in numerical methods.
In this chapter, we shall discUss matrix algsbra and its use in BoVINgG linear system of algebraic

equalions AX = bandin solving the eigen value problem AX = A
1.2 ALGEBRA OF MATRICES

12.1 Definitionof Matrix
A systern of mn numbers arran
called an mairix of order m x .

If A = [8]y DB BTY matrix of of

gad in tha form of a rectangular array having m rows and n colurmng is

dar m = n then it is written in the form:

1311 E‘:‘"""""""'a'l'l 1

B2y  Bgge-eene -Hap
A= (aghaun =

Bt Bapgeeeee Br

Horizontal linas are called rows and vertical lines are called columns.
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1.2.2  Special Types of Matrices

Ol Square Matrix: An m x n malrix for which m = n (The mumber of rows is equal 1o nurmbaer of
columrs) is caled sqQuare matrix. It is also called an n-rowed sQuare matrix. |.e. The elements
a, || = b le.ay,, gz are called DIAGONAL ELEMENTS and the lina along which they lig is
called PRINCIPLE DIAGOMAL of matrix. Elements other than a, . a.,., elc are called off-diagonal
elements ie. a | | =],

4
Example: A = | 4 i & sguare Matrix
9

Lo e & I LV
G @ Do

A= 3
Mote: A square sub-matrix of 3 Square malrix A is called a "principle sub-matrix” if ils diaganal

1 =2
elements are also the diagonal alemanis of the matrix 4, So [4 5] is & principle sub maitrix of

2 3
the malrix A given above, bul [5 E] is not,

2. Diagonal Matrix: & square matrix in which all off-diagonal elements are zera is called a diagonal
matrix. Tha diagonal alements may or may nol be zero.

3 0 0]
Example:A=|0 5 @ i3 a diagonal matrix
008

The above matrix can also be written as A = diag [3. 5. 9]
Properties of Diagonal Matrix:
diag [x. v, z] + diag [p. q.f] = diag [x + p,y+ g,z +1]
diag [x, y, 2] = diag [p, . 1] = diag [xp, yq, 2]
(diag [x, v, z])" = diag [ 14, 1y, 1/z]
(diag [x. v, 2])! = diag [x, v, 2]
(diag [x, y. 2])" = diag [x", y, 2]
Eigen values of diag [x, v, Zl =%, yand z.
Deverminant of diag [x. y, z] = | diag [x, y, 2] | = xyz
3. Scalar Matrix: A scalar matrix is a diagonal matrix with all diagonal elemants being equal.

3 a0

Example: A= [0 3 0| is a scalar matrix,
g0 a

4. Unit Matrix or |dentity Matrix: A square matrix each of whose diagonal elements is 1 and each
of whose non-diagonal elements are zero is called unit matrix o an identity matrix which is
genoted by |. Identity matrix is always square,

Thus a square matrix A=[a,] is a unit matrix i 8, =1wheni=]jand a, = 0when i#},

100 1o
Example: |, = [0 1 DfIs unEtrr'ﬂlri:-c,!E.=[n I]'
D01
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. Upper Triangular Matrix:

tFn'.'-l;.l'u:avn‘.lnsms of identity Matrix:

|

{g; Maidlin'iw:mmanl for multiplication, so it is caled multiplicative dentity,
c) M=

(@ 1=

@ Il =1

Mull Matrix: Them = n m

airix wh ;
MNull matrix ig dencted th o8& elamanis are all zero is called null malrix.

Q. Null matrix nesd not be BqUara.

Doo
Example: 0, = |0 o

00 ]
] =[ 1.'53' o
ogg| el [U]'

Propertias of Null Matrix:
8) A+D=04+a=4
30, O & additive identity.
(b) A+(-A)=0
Anu ri i [
sialbaiolo i ,,.i,z?-,r ;J:P?:I?r malrix is a square matrix whose lower of-diagonal
Il is denoted by L

The diagonal and upper olf diagonal alemeants may or may not be zero.

-1

Exampla: Ll = g
2

[ I s B 4
oo

Lower Triangular Matrix: A lower triangular matrix is a equars matrix whose upper off-diagonal
triangular elements ara zerg, i.e. 8 = 0 whenever i < |. The diagonal and lower ofl-diaganal
alements may or may not be 2ero.

I 15 denoted by L.

100
Example: L= |-1 & 0O
2 3 6

|dempatent Matrix: A matrix A is called |dempatent iff A7 = A

-2 4
1 0 0 0 e =
Exampla: =1 3 & | are axamples of Idempotent matrioes,
a1 0 0 £ E

Involutory Matrix: A matrix A s called Invelutory iff A% = |,

4 3 3
Exampla: 3.9 ig Involutory: Alsa | =1 0 =1 is Involutory since A2 =1,
o 1 i
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10. Nilpotent Matrbc: A matrix A is said to be nilpotent of class x orindex x fA* =D and A* ' 2 0
L&, ¥ is the smallest indax which makes A% = 0,

1 1 3
Example: The matrixA=| 5 2 & | isnilpotent class 3, since A= Oand Af =0, but A% = g,
-2 <=1 =3

1.2.3 Equality of Two Matrices
Twa matrices A= [a;] and B=[b,] are said to be equal if
1. They are of same size,
2. The elements in the correspanding places of two matrices are the sama i e., &, = b, for each pair
of subseripts i and |,

Ew:nn1|.'-hur.1.Elt[:“E-I"r p+q]=[2 5]
P—gQ X+Yy 1 10

Thmr_~y=i_p+q-5_p—q=1andx+y-1IEI|
=5 *=G y=4 p=3andg=2.

1.2.4 Addition of Matrices
/- Two matrices A and B are compatible for addition only if they both have exacily the same size say
m % n. Then their sum is defined to be the matrix of the type m = n oblained by adding corresponding
elements of Aand B, Thus i, A = [g],,, 4B = By then A +B=[a,+b] .

1 2 4 6
E‘.n'.nn'q:nla:.ﬂv.-|;3 5]E=[r E]:

1 2] [4 8 E 8
A+Ba= [a 5]+[? a] - [m 13]
Proparties of Matrix Addition:
1. Malrix addition is commutativa A + B=B + A
2. Malrix addition is associative (A+B)+C=A+ (B +C)
3. Existence of additive identity: If O be m x n matrix each of whoss elements are zaro. Than,
A+0O=A=0 +Afor evary m = n matrix A
4, Existance of additive inverse: Let A =[a]
Then the negative of matrix A is defined as matrix [~8y] . @D IS dENOted by A
= Mailrix —A is additive inverse of A. Becauss (A} +A=0= A+ (-A), Here O is null matrix of
orglar m x n.
5. Cancallation laws holds good in case of addition of matrices, which is X = =,
Ae¥ =B X =4=0
X+h=X+HB=A=8B
6. Theequation A + X = 0 has a unique solution in the set of all m » n matriees.

1.2.5 Substraction of Two Matrices
It A and B are two m x n matrices, then we define, & - 8 = A + (-8,
Thus the difference A -B is obtained by sublracting from each element of A corresponding elements
of B.
Nota: Subtraction of malrices is naither commutativa nor associative,

|
Scanned by CamScanner



Linear Algebra | 5

1.2.6 Multiplication of a Matrix byaScalar
Let A be any m x n matrix and k be any real number called scalar. The m x n mairix obtained by

multiplying every elemernt of the m

kA,

alrix A by k is called scalar multiple of A by k and is dencted by

= I A =3l then Ak = ka i)

5 2 1 15 & 3

IfA=|&8 -5 2|then 3a= |18 -15 B

1.
2.
3.
4.

1.2.7

'3 8 3 9 18

Properties of Multiplication of a Matrix by a Scalar:

Scalar multiplication of matrices distributes over the addition of matrices i &., kiA+B) = kA + kB.
IWp and q are two scalars and A is amy m x n matrix then, (p + gJA = pA + gA
It p and q are two matrices and A = [85] <, then, pigA) =(pa)A.

¥ A=[ay],. . be a matrix and k be any scalar then, (=KA = ~{kA) = k(-A).
Multiplication of Two Matrices

Let A =gl . B=[b],, p D two matrices such that the number of columns in A is equal to the
number of rows in B.

n
Then the matrix C = [c,] . suchthatc, = 2 ;b Is called the product of matrices A and B in that
=1

order and wea write C = AB.
Properties of Matrix Multiplication:

1.

Multiplication of matrices is not commutative. In fact, if the product of AB exists, then it is nat
necessary that the product of BA will also exist. For example, A, , =B, . =C,, , but
B, o % Ay, o doss not exist since these are nol compaltible for multiplication.

Matrix muliplication is associative, ¥ conformability s assured. Le., A{BC) = (AB)C where A,
B, Caremx=n, nxp, pxqmalrices raspectivaly,

Multiplication of matricas is distributive with respect to addition of matrices. ie., A (B+C) =
AB + AC.

The equation AB = O does not necessarily imply that at lsast one of matrices A and B must ba

i A 1 e 00
g zero matrix. For example, i1l =1 =1 e o ol

In the case of matrix multiplication if AB = O then it is not necessarily imply that BA = O. In fact,
BA may nol even axist.

Baoth laft and right cancallation laws hold for matrix multiplication as shown balow:

AB = AC = B = C (iff A is non-gingular matrix) and

BA = CA = B = C (iff A Is non-singular malrix).

ILLUSTRATIVE EXAMPLES FROM GATE

Q.1 Consider the matrices X, , sy Yiexs 8 Pz, 5 The order of [PXTY)" P')T will ba

(a) (2x2) (b) {3 x3)
() (4x3) iy =)

[CE. GATE-2005, 1 mark]
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Solution: (a)

K — 3xd

Y =sd4x3

XY — 3x3
M¥y! - 3=3
P—+2=x3

Pl = 3x2
BXTY)'PT = (2x3)(3x 33 x2)22x2
(PIXTYY'PTYT 5 22

With the given order we can say that order of matrices are as follows.

Q.2 There are three matrixes P{4 x2). Q{2 = 4) and R{4 = 1), The minimum of multiplication required
o compute the maltrix PORA s

Solution:
The minimum number of multiplications required to multiply
A aWith B Is mnp. To compute PQR it we mulliply PG first and then R the number
of multiplications required would be 4 x 2 x 4 (o get PQ and then 4 x4 x 1 multiplications

o mulitply PQ with R. S0 lotal multiplications required in this method is

due2?xd+dxd=) = 32 + 16 = 48
To compute POR if we multiply QR first and then P the number of multiplications reguired
wouldbe 2 x 4 x 110 g8t QR and then 4 x2 x 1 multiplications 1o mulitply P with OR, So
total multiplications required in this method is

2w dxl+dndnd

= 8B+ 8=18

[CE. GATE-2013, 1 Mark]

Therlore, the minimum of multipcation required to computs the matrix POR is = 18

L))

(d)

[ cos®  cose

-C0s8 sing O

0 0 1
[ sind -cose 0
Cos8  sing D
| O 0 1

[ME, GATE-2008, 2 marks]

Q.3 Multiplication of matrices E and F is G. Matrices E and G are
cosl  —sing 0O 1 00
E=|sing cose O|landG=|(0 1 D
0 0 1 001
What is the malrix F?
[cos8 -sing 0]
{a) | sinB cose O
| O 0 1]
[ cos®  sing O
fc) |=-sin® cose O
0 0 1
Solution: (c)
Mathod 1:
cos

E =

'Scanned py CamScanner
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1 00
ard G=1010
001
According lo problem
EHF = Ei

cos®  sing 100

of ~sing cose O|xF = [0 1
0 D1 00 1

Hence we see that product of (E x F) is unit matrix so F has lo be the inverse of E.

: cosdé  sing O
Ad !
o B —éliE-!= -%ing coza 0

0 o 1
Mathod 2:

An agaiqr method for finding F is by multiplying E with each of tha choices (a), (b), (c) and (d)
and finding out which one gives the product as identity matrix G. Again the answer is (c).

1.2.8 TraceofaMatrix

Let A be a square matrix of order n, The sum of the elements lying along principal diagonal is called
the trace of A denoted by Tr{A).

n
Thus If A = [a ], then, TrA) = 38 =a, +a,,+..a.,

| 1 2 5
Lat A= |2 31
=1 & b

Then, race (A) = trlA)=1+(-3) +5=3

Properties of Trace of a Matrix:

Let A and B be two square matrices af order n and A be a scalar, Than,
1, tr{id)=AtrA

2 triA+Bl=rA+1rB

3. tr(AB) = tr (BA)

1.2.9 Transpose ofaMatrix
Let A = [&,],, ., Then the n x mmatrx obtained from A by changing its rows into columns and its
columns into rows is called the ranspose of A and is denated by A’ or AT

13

1286
LatA=|2 4 M-AE‘”:[ ]
& & 3465

B =[12 3] then

3
B=[123)=[2 3]‘=H
3

“Scannea Dy Camascanner
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Properties of Transpose of a Matrix: N

It A’ and B’ be transposes of A and B respactively than,
1. (AT =A

2. (A+BY = A"+ B

3. (kA) =kA" k being any complex number
4. (AB) = B'A

5. [ABCY =C'B" A

1.2.10 Conjugate of aMatrix

The matrix abtained from given matrix A an replacing its elements by the correspending conjugate
complex numbers is callad the conjugate of A and is denoted by A -

2+3 4-7 8
Exam I &= :
ple: 11 A [ - B 9-+i]

-3 4+7 8
A =[ + B EI—I]
Properties of Conjugate of & Matrix:

if A & B be the conjugates of 4 & B respectivaly. Then,
m = A

(A+B) = A+B

{kA] = KA , k being any complex numbaer

(AB) = . A&B being conformable to mulbiplhication
A = Aift A s real matrix

0o L P

A =-AiffAls puraly maginary matrix

1.2.11 Transposed Conjugate of Matrix
The transpose of the conjugate of a matrix A is called iransposed conjugate of A and is dencted by

T
AYor A* or (A] . Itis also called canjugate transpose of A

2+ 3=i
Ex - =
ample: if 4 [4 1_|]

4 4+

s ab e I:E}T o [E—i 4 ]

i T+i

To find AP, we first find & = [2_] 3+1

m i;;:up:-um: If A" & B be the ransposed conjugates of A and B respectively then,
]

2 (A+BP=2A"4p*
3. (kAP =Fa". k - complex number
4. (AB)" = pUAP

e T e - . F—————
Scanned by CamScanner
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1.2.12 Classification of Real Matrices

Real ' ifiad i
m: :‘IEIIEEE can be classifiad mia the following three lypes based on the relationship betwaan AT

1. Symmetric Matrices (AT = Al

2. Skew Symmetric Matrices (AT = =)

3. Orthogonal Matrices (AT = A~ o AAT =)

1. sw_nrnatﬁn Matrix: A square matrix A< [a,] is said to be symmatric if its (i, )™ elemants is same
as its (], "™ elemeant ja. 8, =a forali& |
In & symmetric matrix. AT = A :

a hg
Example: A= [h b {|iza symmetric matrix, since AT = A,
| g f ¢
I
| Nota: For any matrix A,
{a) AAlis always a symmatric matrix,

1
() g EA is always symmetric matrix,

Note: If A and B an symmetric, then
(a) A+ BandA - B are also symmetric.
(b) AB. BA may or may not be symmetric.
2. Skﬂwﬁymwh-n Matrix: A sguare matrix A = [a,] i= 2aid to be skew symmetric if (i, j)™ elemeants
of A is the negative of the (j, ij'" elements of A if 8, =-a; ¥ij
In @ skew symmetric matrix AT = - A,
A skew symmetric matrix must have all 0's in the diagonal,

0 h g
Example: A = |-h 0 | is a skew-symmetric matrix.
-g -f 0

2

3. Orthogonal Matrlx: A square mairix A is said be orthogonal If
AT = A1 = AAT = AA7T = | Thus A will be an orthogonal matrix if, AAT= | = ATA,
Example: The identity matrix is orthogonal since ' = 1! = 1.
MNote: Since for an orthogonal matrix A,

Mota: For any matrix A, tha matrix

is aways skew symmeatnc.

AAT = |
- laat| = [i] =1
e (Al = 1
=5 lal = =1
So the determinant of an orthogonal maltrix always has a modulus of 1.

m”lTEU ny cvaililiovalliiicel
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1243 of I =3 tionstup betwaeen A9
Complex matfices can be ciassified ino the following threa iypas based on reld H
and A,
1. Hermitian Matric (A% = A)
2. Skew-Hemitian Matrix (A® = -A)
3. Unitary Matrix (A% = A or AAT = 1) _ o
1. Hermitian Matrix: & necessary and sufficient condition for @ matrix A 1o be Herrmihian 15 that
A= A
Exampla: A 5
w b-ic _ _
5 Skew-Hermitian Matrix: A necessary and sufficient condition for a mairix io be skew-Hearmilian
il & = A,

B+ic .
: ] is a Hermitian mairx.

Exampla: A = [;I _ _Eﬂ_ 1] is skew-Hemitian,

3. Unitary Matrix: A sguare matrix A is said to be unitary iff:
alt = a7t
Multiphying bath sides by A, we get an alternate delinition of unitary malrix as given below:
A sruare matrix A is sald to be unitary iff:
’/ AAR = | = AUA
1#i =141

Example: A = 13 i 12 . is an example of a unitary matnix.

2 8

ILLUSTRATIVE EXAMPLES FROM GATE

Q.4 Real matrices [Al . [Bl;, 4 [Cly, s [Dls, 4 [Els .5 @9 [Flg, , are given. Malrices [B] and [E]
ae SYITIMEIric.

Foliowing statemenis are made with raspect 1o these matrices

1. Matrix product [F]" [C]" [B] [C] [F] is & scalar.

2. Matrix product [D]7 [F] [D]is always symmatric

With reference to above stalements, which of the fallowing applies?

(a) Statermment 1 is true but 2 is false {b) Statement 1 is false but 2 Is Fue

(¢} Baoththe statemants are true {d} Both ihe statemaents are talse

[CE. GATE-2004, 1 mark]
Solution: (a)

Statarnant 1 is true as shown balow.
[Fl'has asize 1 x5

[C] hasasizaSx 3
[Blhasasize I x 3

[Clhas asizad x5

[F] has a size § x 1

So [FI"[CIT[B] [C] [F] has a size 1 x 1. Thersfore it is a scalar,
So, Statement 1 s frua

oldlirieu py cdlinscaliiel
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Consider Staterment 2. DTF D s always symmalric.

Now O F D does not exist since 0545 Fe,yand O, . are not compatible for mutliplication
since, O

aasFy, =%y and X, | D, . 5 does not exist.
So, Statement 2 ig talze,

Q.5 [A]is square matrix which s neither symmetric nor skew-symmetric and [A] is its transpose.,
The sum and difference of thage matrices are defined ag [S] = [A] + [A]" and [D] = [A] - [A]',
respeciivaly. Which of the following statements is TRUE?
ta} Both [S]and (D] are symmetric
(o) Both [S] and [D] are skew-symmetric
(e} [S]is skew-symmetnc and (D] is symmetric
(d) [5]is symmetric and (] 15 skew-symmatric

[CE, GATE-2007, 1 mark]
Solution: (d)
Since S=(A+AY = A4 (ay
= Alyf=5
e 8 =235
- 5 is symmeatric
Since Dl=fA-AY = A-(AY=-A-A=(A-A)=-D
I.e D= D

50D is Skew-Symmetric.
Q.6 A sguare malrix B is skaw-symmetric if

") B =-8 (b) B = B
cl B'=B (d) B =BT
[CE, GATE-2008, 1 mark]
Solution: (a)
A square matrix B is defined as swew-symmatric if and only if BT = -8, by definition.
g2 1
Q.7 Given the matrices J= |2 4 2] and
126

1
2

K a . the product K" JKis .

[CE, GATE-2014 : 1 Mark, Sei-1]
Solution:

canned by Camscanner
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32 111
KTJH“”Enq]?-‘-‘E 2
12 6(|-1
1
= [68-1]| 2|=6+16+1=23
-1

Q.8 Wih reference to the conventional Cartesian (x, y) coordinate systam, the vertices of a triangle
have the following coordinates; (x,, y,) = (1, O); (x5, ¥a) = (2, 2); {xy, ¥a) = (4, 3). The area of the
triangle is equal to

3 3
(a) 5 o 7
4 5
(c) 3 i) 5 [CE GATE-2014 : 1 Mark, Set-1]
Solution : (a)
¥
£i4.3)
Bz.2)
a b
Mo

1
Area of the rangle = E]n{yz = ¥a)+ xalva = y3) 4+ xly, = )|
1 1 3

Q.9 Match List-1 with List-ll and select the correct answer using the codes given below the liste:
List-l List-11

A.  Singular matrix 1. Determinant is not defined
B. MNon-square matrix 2. Detarminant is always one
C. Real symmatric 3. Determinant is zerg
D. Orthogonal matrix 4. Elgenvalues are always real
5. Eigenvalues are not defined
Codeas:
A B c D
{a) 3 1 4 2
(b 2 a3 4 1
(c) 3 2 5 4
(d) 3 4 2 1 [ME, GATE-2006, 2 marks]
Solution: (a)

A, Singular matrix — Determinani is zero

B. Non-square matrix ~ Daterminant is nol defined
C. Real symmetric — Eigen values are always real

0. Orthogonal matrix — Detarminant is always ane

cannea py camoscanner
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0.10 Which ane of the following equstions is a corect identity for arbitrary 3 x 3 real matrices F, Q

and R?
(a) P(Q +R)=PQ +RP (b} (P—QF =P?-2PQ + QF
(c) cet(P+Q)=delP+detQ (d) (P+QF=P4PO+QP+ P
[ME, GATE-2014 : 1 Mark, Sat-1]
Solution : (d)

(P+QF =P+ PQ+QP + Q2 =PP + PO + QP + Q0 = P2+ PO + QP + Q?

©.11 Which one of the following statements is true for all real symmetric matrices?
(a) All the eigenvalues are real (b)) Al the sigenvalues are positive.
(c) Allthe eigenvalues are distinct {d) Sum of all the eigenvalues is zero.
|[EE, GATE-2014 : 1 Mark, Set-2]

Answar ; (a)

1 1 1T

- - =1
Q.12 Given an orthogonal matrix A = R [.-I.AT] is

1 -1 0 0f
a o 1 -1
@ [ 000 o |1 oo o
4 2
1 1
0 5 00 o = 0 0
1 1
i - 0
0 0 - 0 oo 3
1 1
0 0 0 5- _D o o E_
e) [1 & 0O @[ oo o
0100 4 1
[ O o O i} E I
0 0 01 1
0 0 =20
4
6o 0o 2
! 4
[EC, GATE-2005, 2 marks)
Solution: {c)
For orthogonal matrix AAT = | ... ldentity matrix
; (AT = ' =|
.13 For matrices of same dimension M, N and scalar c, which one of thesa proparties DOES NOT
ALWEYS hold?
(2) (MTYT =M ) (eM)T =ciM)"
ic) (M+NT =M +NT {d) MN = MM
[EC, GATE-2014 : 1 Mark, Set-1]
Salution : (d)
Matrix multphcation is not commutative,
s Wil L L A U T i P—
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Q.14 Which one of the lallowing statements is NOT true for & square malrix A?
{a) If A isupper triangular, the eigenvalues of A are the dugonal elements of it
(b} If A is real symmatric, the eigenvalues of A are always real and posilive

{e) If Aisreal, the aigenvalues of A and AT are always the same
{d) IF &ll the principal minars ol A are positive, all the aigenvalues of & are also positive
[EC, GATE-2014 : 2 Marks, 5at-3)

Answear ¢ (B)

Q.15 Areal square matrix A is called skew-symmelnic if
(a) AT=A (b) AT= A"
c) AT=-A dl AT=A+ A"

[ME, 2016 : 1 Mark, Set-3]

Solutian: {c)
A5 skew-symmatric
A=A
Q.16 Let M* = 1, (where [ denotes the identity malriz) and M=, M2 fand M? 2 f.. Then, far any
natural rumber k, M- aguals:

@) Mk (b) Mke2
[e) ME+3 {d) Agh
|EC, 2016 : 1 Mark, Set-1]
Solution: (c)

Given that M = For M¥ = for A4k o g
" A1 s 1w B s 1y a1
M-t = R 3

13 DETERMINANTS
1.3.1 Definition

dyy Sy

85, @g,| MOPTESENIS e number a, 8.,

Leta,,, &, 85, 8,; be any four numbars. The symbal & =

- 858, andis called daterminants of order 2. The number a, ,, &5, 8y, 8,, are called elements of the
ceterminant and the number 848, - 8, 8y, I5 called the value of determinart.

1.3.2 Minorsand Cofactors
8y 8 8B4y
Consider the determinant [921 Hga dp
dy B am
Leaving the row and column passing through the elements a,, then the second order determinant
thus obtained is callad the minos of element &y and we will be :l:lﬂnmed by I'-..'lll_

. Hy; @
Example: The Mincr of slement a,, = B it
EEE 333_ 21
o dyy Ayn
Similarhy Mirar of alam = =
by OBy = o) ayl =Mae

Lol

5cannea By 6am§canner
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1.3.3 Cofactors

T ] B i+ 1
ﬂ:E minar M, multiplied by (-1} 1 is called the cofactor of element a, We shall dencte the cofactor
E:'” element by correspanding capital lstter
ample: Cofactorofa, = A = (_¥+
ro .|:|.|1 'n\‘l { 1}I | Mu'

Cofactor of aleman) a,,= AEI P l:—I:IE“ TERETE 22 dyg
2 2y 8y
by cofaclor of elemant B B 8y dgy
: dy ap

Wi . :
mu define for any matrix, the sum of the products of the elements of any row or column with
rresponding cofactors s equal to the determinant of the matrix,

1 20
E.'!ﬂ'ﬂplﬂ:“ A= =18 1
|2 0 2
12 4 -12
then, coffA) = |-4 2 4
- G
lAl = (1%12)+ (@ x4+ (D x-12)

(=1 s -+ {6 % 2) + (1 x4)
(22 +0x-1)+{2xB) =2

1.3.4 Determinantofordern

A determinant of order n has n-row and n-columns. It has n = n elements.
A determinant of order n is a square array of n x n quantities enclosed betwesn vertical bars.

E-” 312 ........ = P,
b= 321 ............ E'?r
M B g

Cofactar of A‘ of elamants B in D is aqual to (1) times the determinants of order (n -1) oblainad
froem D by leaving the row and column passing through element a,

3 3 3 E]
lfAisa3x 3matrix then |a] = ¥ A, coifa, ) = ¥ Ay coita,) = ¥ Ay coliag) = T A, coi(a, ) et
T | =1 i=1

[ j=1
Therefore, daterminant can be expanded using ary row ar column.

1.3.5 Fruperliesufﬂntunnhﬂnts

i. The value of a determinant doas not change when rows and columns are interchanged. ia.
|aT[= | Al

2 I any row (or colurmn) of a matrix A is compleely zer, then | A | = 0.
Such arow (or column) |s called a zero raw [or calumny.
Also if any two rows (or columns} of a matrix A are identical, then lal=0.

3. If any two rows or iwo columns of a determinant are interchanged the value of determinant is
multiplied by -1,

4 | all elernanis of the one row (or one column) of a determinant are multiplied by same number k
the value of daterminant is k times the value of given determinant.

5 If A be n-rowed square matrix, and k be any scalar, then likal = kAl

oldallliceu vy vaiiouvaitliiel
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S

& (a} Ina determinant the sum of the products of the elements of any row {or ColumMn) with the
cofaciors of comesponding elements of any row or column is equal 1o the determinant valus.
(b} In determinant the sum of the products of the elements of any row (or column) with the

cofactors of some other row or column IS Zerd

Example:
a b g
A= |83 Dy C
83 by o
Then ah, +bB, +cC, = A
af,+bB,+cC, =0
8yfy + 0B +C,Cy = O
af, + b8, + .0y = A
ah, + b,B, +cC, = Delc

whera A, B,, C, etc., be cofactors of the elementza, b, ¢, in 0.

7. litothe elements of & row (or column} of a determinant are added m times the corresponding
elements of another row {or column] the value of determinant thus cotained |s equal to the value
of origingl determinant.

o, A— .8 ihen |A] = 18]

/ andA—""""l 8 than |A| = |BI
8. |aB| = |al*|B| and based on this we can prove the fallowing:
e} lan| =¢lalye k
i |
A = o=
) A i
Proof of a: lar] = |A«A+A  nitimes|
= |al = |4l « [A] .. ¢ times
= (laly
Proof of b: laar] = il
= 1
Now sinca, laat] = |al |at]
: lal a1 =1
A = L
™ " Tl

9. Using the factthat A . Adj A = |A] . I, the following can be proved for A__ .
@ ladial = |aln-
(b) | (adjap| = |aln-1#

ILLUSTRATIVE EXAMPLES FROM GATE

476

Q.17 Ifany two columns of a determinant P = g ; g are interchanged, which one of the following
|
statements regarding the value of the determinant is CORRECT?

w—-&v — R — “_....:-.J
canne y Camoscanner
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{a) Absolule value remains unchanged but sign will change

{b) Both absolute valug and sign wil change

(c) Absolute value will change but sign will not change
{d) Both absoluste value and sign will remain unchanged

Solution: (a)

[ME, GATE-2015 : 1 Mark, Sat-1]

Pr inant -
Operty of determinan : If any two row or column ars intarchanged. than mangnitude of

determinant remains same but sign changes.

3 4 45
Q.18 Perform the following operations on the matrix T 9 106),

13 2 185

1. Add the third fer to 1he second row

2. Sublract the third column from 1he first column
The determinani of the resultant matrix is

Solution: (0)

[CS, GATE-2015 : 2 Marks, Sat-2]

aincea ﬂ_pemimna 1 and 2 are elementary operations of tha type of Rx kR and C + kC
respaciively, the caterminan will be unchanged from the criginal determinari. I

3 4 45
50 the required determinarnt = |7 9 108
13 2 195
3 4 45 340
7 9 15 @15 |2 g g| =0
13 2 195 13 2 0

S0 the raguired daterminant = 0.

Q.19 For A u[ l.anx:l_ the determinant of A” &4 is
=fanx 1
(a) sec®x (o) cosdx
(c) 1 ) O
[EC, GATE-2015 : 1 Mark, Sat-3]
Solution: (c)
Long Method:
4 .
e 1 fanx
| —lanx 1 |
e [ 1 —tanx]
_I.ar'l.t 1 ]
agaw | | T
| tanx 1

Scanned by CamScanner
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. 4 1 1 = [@nix
A = ——| [de[ ]] tan ¥ | tanx 1
1 1 —tan r}
~ sac’ x | tanx 1
rad [ 1 -mnx] 1 =1ana
Here, o, = [Lan-r IHE I-Ilil"' | ]
1 |1-tafx —2tanx
sac’ x| Ztanx 1-tan®x

1-tany -2tanc

aTat o | s86’s  secs

2tanx 1= tan® x

N sae’ x SEEE I

2
|ATact| = (1-tan®x +[2tan:)’
| sec’ x sec” x

1+ tan’ x=2tanf x + dtarn’ ¢

= =

sec? x
(or)
Short Mathod:
Since lagl = Al |B]
/s |ATA7 = |7l A7]
i |AJx|l:=: [an:a 1Ar|-|d|andln"I=ﬁ]

1.4 INVERSE OF MATRIX

The mvarse of a matrix A, exists iff A s nen-singular (L. |A| » 0) and is given by the formula
pot o AdIA)
&

Irverse of A when it exists is unigue

1.4.1 Adjointofa Square Matrix

Let A=[a.| be any n = n matrix. The transpose B of the matri

5 . rix B = [A] _ where A denoles the
cofactor of alement a, is called the adjoint of matrix A and is denated l;:a; ;::'rml ,.h.u?
Adj (A} = [cof (4)]
Properties of Adjoint:
IF A be any n-rowed square matrix, then (Adj A) A = A [Adj A)=| Al I,
where | is the n x n identity matrix,

1.4.2 Propertiesofinverse
1. AA T = 214 = |
2. Aand B are invarse of sach ather iff AB = BA = |
3 (ABy'=B"'A"

‘Scanned by CamScanner
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':AE':} L el B-1 A

:: :'J'ﬂ 8NN % N non-gingular matrix, then (A7 = (A1
be an n x n non-singular matrix then (A" = (AT,

F i :
oF 8 2 % 2 matrix therg is a short-cut formula for inverse as given below
[E' t‘]_ o1 d -b
& ¥ fad-bc) | a |

ILLUSTRATIVE EXAMPLES FROM GATE
Q.20 The inverse of the 2 « 2 matrix [1 E] is
BT

o Bl -0 LS

1=-7 2
= (7 2
(&) 3[5 —1] (b) 5[5 1]
I £ =2 1[-7 -2
{c) 3[-5 1] (d) 5[_5 _1]
Solution: (a) [CE, GATE-2007, 2 marks]
' a b]
nverse of a :I:]'E

a b’ 1 [d -b
c d] (ad-be)|l-c a

[12] LS - O | =
8 7] (7-10) |- r]=-:a_5 1]

1= 2
" 5[5 —1]
Q.21 The product of matrices (PO)'Pis
{a) P (b) O
(e) PTQP (dy PQP
Solution: (b) [CE, GATE-2008, 1 mark]
(PQY'P = ([@'P)P
= ([@) (PR
= (@)l
= 0

_ 3+ 3 i _
Q.22 Tha invarse of the matrix 4 A-3 ]

113+ 4 113-8
@ 3] 3-9] ®) E[ | :3+5]

1[3+2 i 1[3-2 <
© 1_4[ i 3-—3] @ | 3+3]

[CE, GATE-2010, 2 marks]

=
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Solution: (b)

£ 5. 1 Td &
¢ d/  (ad-bc)|l—<c a

[3+E‘i P T 1 [E—Ei —i]
4 3-2] o [Eeae-2+f]l 1 3+2

1[3-2 i
12 + 3+3

01 2 3
.23 Tha determinant of matrix oAl is
2 30 1 =
a0 9 a2
[CE, GATE-2014 : 1 Mark, Set-2]
Solution -
g 1 2 19
1T 0 3 g
A=123 01
3 0 1 2
,r" HJ*HJ‘HE‘H:.
01 2 3
10 3 9
A= s 3 g 4
D =3 =2 1
H4—1H4+3FI1
o1 2 3
Ao |1 08 0O
230 1
00 4 10
R; = R, - 3R,
o1 2 3
ia |10 & B
2 0 -6 -8
Do 4 10
Interchanging column 1 and column 2 and taking transposa
10 0O
g ¢ 12 @
A= — _— ey
‘23—64 hig__::]
30 -8 10 '

1 1(~60+32)+ 2(0-30)|
—{-28 - B0) = AR
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0.24 For which value of x will the matrix given below bacome singular?

B x 0
4 0 2
12 &6 0
ia) 4 () &
fe) 8 (d) 12
[ME, GATE-2004, 2 marks]
Solution: (a)
8 x 0
For singularity of matrix = {4 0 2|=0
12 & 0
= B0-12)-x(0-2x12) = 0
e 4
3 4
Q.25 For & matrix [M] = | 2 ‘ra" . thia transpose of tha matrix is equal to the inverse of the matrix,
"5
[M]™ = [M]". The value of x is given by
4 a
@ -z b) -3
3 4
[ME, GATE-2009, 1 mark]
Solution: {(a)
Given M™ =M.
SoMM=|
3 3 4
g *lIs55_[19
= 4 3||, 3| 1o
5 5 5

e (383 19

) ORE

= Compare both sides a

oudlllicu vy vailliouvaliicel
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1 340
Q.26 Given that the determinant of tha matrix | 2 & 4| is - 12, the determinant of the matr,
-1 0 2
2 6 0
4 12 8| 4
2 0 4
(&) -96 {b) - 24
(c) 24 {d) 96
[ME, GATE-2014 ; 1 Mark, Set-1]
Solution : (&)

Let O = - 12 for the given matrix

=
1l

4 128/ _’l2 6 4

(Taking 2 common fram each row)
: DetiA) = (2P xD=8x-12=-96

) ) A+ =
Q.27  For given malrix P = [ d—ar] where ;= /77, tha inverse of matix P is
1 4=-3i i i [ -
(@ 24[—.‘ 41:3.-] (&) E[naf -f]
A [a+3 - 1[443 -
c) aaly 4= (a) EL 4—34']
[ME, GATE-2015 : 2 Marks, Set-3]
Solution: (&)
d+3 =i
F=1 l—a.f]
4-3i ~(-i)
=i  d4+3 1(4-3 i
Pl= i ks
A 24[ ~i 4+Elr']
10 -
Q28 fR= {2 ! ! then top row ot R is
23 2
(a) [564] (b) [5-31)
{ch [20-1] (d) [2-11/2)
[EE, GATE-2005, 2 ks
Solution: (b) i
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At . 29iF)  [cofacior (A)]

A Al
T 0 =1

IRl = {2 1 -1
23 2

= H2+3)-0(d+2)-1{6-2)=5-4=1

Since we need arly the lop row of ', we nesd 1o find only first column of cof (R) which after
transpose will becomsa first row of adj (R).

1 =1

col. {1,1) = 4 5 =2+3=5
o =1
col. (2,1) = _|3 5 ==3
o -1
col. (3, 1) = =
(3 1) +.1'| cf +1
B = =
col (A) = [-3 - -
1: ks Li
5 =3 1
Adj(A) = [cob (A)T= |- -
Dividing by IRl = 1 gives
5. -3 1
BYe |- — —
top rowof BY = [5 -3 1]

Q.29 Aismx n full rark mairix with m > n and | is an identity malrix. Let matrix A" = (ATAF ' AT, Then,
which one of the following statement is TRUE?

(8) AAA=A (b) (AAF=A
(c) AAA = | (d) ANA = A
[EE, GATE-2008, 2 marks)
Solution: (a)
Choice (a) AAA = A s correct
Since, AbCA = ALATAYY ATA = A{ATA)" ATA]
Let ATA = P
Then = A[PF'P]=Al=A
2 01 [1 a
0.30 Lel, A = ] and A”'=|2 | Then(a+b)=
o 3 0 b
@ 3 ®) o5
19 11
- @ = [EC, GATE-2005, 2 marks]

R LS AR A AR AL LI ]
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e
Solution: (a)
EJ"'-""-'1J="
2 -01]|[% a] _ [f ﬂ]
= o 31lo 6] " o1
1 2a-0.1 . 10
= 0 3b 0 1
= 2a-0.1b = O=a=010/2 A1)
1
3B =1=b=¢

3

Now substitute b in equation (i), we get
1
a4 = E
1 1 1+20 21 T
h L — — =3 = e e

i arit®mtI T e @

Q.31 Let A be an mxn matrix and B an nxm matrix. It is given that detarminani
(I, +AB) = determinant (|, + BA), where |, is the k =k idantity matrix. Using the above property.
tha detarminant of the matrix given balow is

21
1

1 1
e 11
p [ - S |
71012

(@ 2 . (o) 5
{c) 8 (d) 16
[EC, GATE-2013, 2 Marks]
Salution: (b)

Takea the determinant of givan mairix
2|24 - N2~ T+ (-] - 14— D-A2- N+ W=-2)] = AE-1-1]=1B-1-1]+1[1-2+0]-1-1+2+0]
112~ =22~ D+ W1 - 0] = (1= 2) - 201- 2+ 1 - 1]
29 -1+ 1-1)=1(1)=8=1=1=1
=58
(.32 The determinant of matrix & is 5 and the determinant of mafrix B is 40. The determinant of
matrx AR is

[EC, GATE-2014 : 1 Mark, Set-2]

Solution :

&

40

4| |8]

5 x 40 = 200

Q.33 The maximum value of the determinant among all 2 x 2 real symmetric matrices with race 14

Datarrrinant of &
Datarminant of B
Detarminant of AB

[EC, GATE-2014 : 2 Marks, Set-Z]

Scdrirneu py cdlnocdariner
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Solution :
L‘E“.. i H X
X b
- |a| = ab-x2
Giventrace(A) = a+b=14
30, |Al = af14-a)-»2

g:;me, *? s always positive maximum value of (14 -a) - x% occwrs only when x = 0,
W, lal = a(14-a)=14a-a2
MNow maximizing this with respact 1o a,

d| A
4.—';'=m-2a=u
= a=7
& | A
Sinca _|_| -

da?

=
Aom

Ma= ?.weha'u'a-arnaximum_'l'rmmmmum valugi= 14 x?_?ﬂ=49

Q.34 Let A, B, C, D ban x n matrices, sach with nan-zero determinant, If ABCD = |, then B-' is
) T oAt (b} CDA

(©) ADC (d) does not necessarily axist
CS, GATE- s
Solution: (b) [ TE-2004, 1 mark]
A B C, Disn=xn matrix,
Given ABCD = |
= ABCDO-' ' = DG
= AB = D'
= ATAR = ATD1
e B = A-'D- 1
B = (A DG
= [C:-1}-'|..[D-1}-1 .”,'—1}-!
= GOA
1 % x°
(.35 Which one of the following does NOT aqual |4 y y2i?
1228

1 xx+1 x+1 1 %+1 %%41
(@ |1 yiyv+1D y+1 b) [1 y+1 y2+1

1 Zz+T z+1 1 7241 72241

0 x-y x*-y® 2 x4y x4y
€ |0 y-z y*-2* @ |2 y+z y242

1z z 1 z r

[CS, GATE-2013, 1 Mark]

Scanned by CamScanner



26 | Engineering Mathematics for GATE and ESE Prelims MADE EAsy

——

Solution: —
Tm{:ﬁm ratrix can be ransformed into the matrix given in options (b)(c)and (d) Dy elemaniy,

oparations of the type of Rt kR or C £ kG, anly as shawn balow:

Option (b):

1 2 2 11 x+1 241

1y v |—RE|1 y+! ye a1

iz & 1 z+1 2241

Option (&)

1x 2 0 x-¥ .l'z-}""u'
1y |0 y-z y*-2°
12 2¢ 1 z g

Option (d):

1 x x2 2 x+y X4y
1y PE——E%»E y+2 a2
1z.2 2

Option (a): We can show the given matrix can not be converied into option (a) without doing a
column exchange which will change the sign of the determinant as can be seen below:

1 x rE| 1 x+1 xx+1 1 o+ x+1
1y pP—E y+1 ply+ | = |1 yly+T) oy
12 22 1 2+1 2(z+7 1 Hz+0 z+1

Q.36 If the matrix A is such that

2
A=|-4|[19 5
i

then the determinant ol A s equal 10 s
[CS, GATE-2014 : 1 Mark, Set-2]

Solution
2
A= |49 5
| 7
(2 18 10
A= |-4 -36 -20|=|A|=0
|7 83 35
a0a?v
) 251 3
Q.37 The matrix A = Ab % & has det(A}=100 and irace (4)=14. The valueof |a-blis
000 b

[EC, 2016 : 2 Marks, Set-2

Qvaliicu vy vaililiovalt nicl
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Solution:

Trace ot A = 14
8+5+2+b=14
g+bwm?7

det (A) = 100
a8 ad 7T
90 2 4| =100

0D O0ob
SxZ2xaxb= 10
10ab = 10
Fram equation (i) and (ii) mER i
eithar 55 bay
| 8=2 b=5§
la-bl=15=-21a3

1.5 RANK OF A MATRIX

Rank is dafined for any malrix A, (nead not be squars)

Some impaortant concepts:

1. Submatrix of a Matrix: Suppose A is any matrix of the type m x n. Then a matrix oblained by
lBaving some rows and soma colurmns from A s callad sub-matrix of A

2. Rank of a Matrix: A number r is said to be the rank of @ matrix A if it poasesses the following
properties:
{a) Thereis at least one square sub-matrix of A of order r whose daterminant is nat aqual to zero,

(B 1 the matrix A contains any square sub-matrix of order (r + 1) and above, then the detarminant
of such a matrix should ba zaro.

Put together property (a) and (b} give the definition of the rank of a matrix as the “size of tha
largest non-zaro minor”,
Naote:
(@) Tha rank of a matrix is <, if all {r + 1) - rowed minors of the matrix vanish,
() The rank of & mairix is 2 r, if thera is at least one r-rowed minor of the matrix which Is not
aqual to zero.
{c} The rank of transpose of a matrix is same as that of criginal matrix e, rfAT) = rA).
(d) Rark of a matrix is sama as the numbar of linearly indapendent row vactors in the matrix as
wall as the number of linearly independent column vactors in the matrix,
{8} For any matrix A, rank (A) £ min{m,n)
i.a., maximum rank of A_ = min{m, )
ifi Rank (AB) < Rank A
Rank (AB) < Rank B
So, Rank (AB) = min(Rank A, Rank B)
(g) Rank (A") = Rank (A)
(h) Rank of &8 matrix is the number of non-zero rows in its echelon form.
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Echalon form: A matrix is in echelon form it only i
1. Leading non-zero elementin every row is behind leading non-zero glement in previous sy,
This means balow the leading non-zero elament in evary row all the elements miust be ze,,
2 Allthe zero rows should be below all the non-Zerc rows.
This definition gives an alternate way of calculating the rank of larger matrices {larger than 3 » 3
more easily, To reduce a matrix to its echelon form usa gauss elimination method on the mstr,
and conver it into an upper triangular matrix, which will be in echelon form, Then count the
numbeer of nan-zero rows in the upper tiangular matrix to get tha rank af the matrix,
(i} Elamentary transformations do not alter the rank of a matrix
(i} Only null matrix can have a rank of zera. All other matrices have rank of atieast ona.
(k) Similar matricas have tha sama rank.

ILLUSTRATIVE EXAMPLES FROM GATE

4 2 13
(2.38 Given Matrix[A] = |6 3 4 7| the rank of the matrix is
2 101
(a) 4 {b) 3
(c) 2 (d) 1
[CE, GATE-2003, 1 mark]
Solution: (c)
Conssder first 3 = 3 minors, since maximum possible rank is 3
4 21
€ 3 4| =0
12 10
2 14
3 4 7| =0
B
4 1 3
6 4 7| =0
2 01
4 2 3
and 63T =0
211
gince all 3 x 3 minors are 2e10, now ry 2 x 2 minors.
4 2
6 a| ="
2 1
3 4 = E'SEE#D
So, rank = 2
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g8 0 4 4
Q.39 The rank of the matrix |2 14 8 1Bl
14 <14 0 =10
[CE, GATE-2014 : 2 Marks, Set-2]
Solution :
Bl ol S
-2 14 B 18
14 14 0 -10
R, = R; - 2R, + R,
[ B ] 4 4
-2 14 a8 18
| 14-2{6)+(~2) -14-2(0)+ (14) 0-2(4)+8 -10-2(4)+(18)
6 0 4 4
-2 14 B 18
0 0 0 O
6 0
, Detarrminant of matrix [__2 14] is not Zero,
| =~ Hank is 2,

Q.40 Let A=[a,]1sijsn with nz3anda, =ij. The rank of A s

(a) O {by 1

| ey =1 ) n [CE, GATE-2015 : 1 Mark, Set-11]
| Solution: (b)

Rank aof 4 = 1
- Bacause each row will be scalar multiple of first row. S0 we will get only one non-zero row inrow
| Echaleaon form of A,
| Alternative:

Rank of 4 = 1

Because all tha minors of crder graater than 1 will be zero.

Q.41 X =[x, %, ..%,]' I8 an n-uple nonzero vectar. The n x n matrix V = w0

{(8) hasrank Zaro (o) has rank 1

{c) isorthogonal {d) hasrankn [EE, GATE-2007. 1 mark]
Solution: (b)

i Ko P R )

Rank ¥ = 1, since it is non-zera n-tuple,

Rank X! = Rark X = 1

Now Rank (X7 < min{Rank X, Rank X)

Rank (¢ < min(1, 1)

Rank (XX < 1.

| So ¥{'has a rank of a eithes Qor 1.

| But since both X and X! are non-zero vectars, 5o nelther of their ranks can be zero.

So ¥X'has a rank 1.

41
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Q.42 Two matrices A and B are given below:
. 5
Pm[n q]; a.|P +f n:+q?
r & pr+ege r+8
If the rank of matrix A is M, then the rank of matrix B is

@) "2-* 6) N-1
© N (d) 2N
[EE, GATE-2014 : 1 Mark, Set-3)
Solution : (¢)

e [t 4

- [n’Hf w+m]=m.

pr+gs r°+s°
There are threa cases for the rank of A
Case | rank{A} = 0

=» Aisnull. 508 = AA' also has to be null and hence rank (B) is also equal to 0. Therefore in
this casa rank [A) = rank (B).

Casa |I: rank {A) = 1
= A cannot be null. S0 B atso cannct ba null, since B = A4
/ o 18] = |AA] = Al - [at]= |AJ?

Sorank (B) » 0. Now since rank (A) = 2in thiscase, |A| = 0, whichmeansthat |B] = |&|? =0
S0 rank (B) is also = 2. Mow since rank (B) = 0 and = 2, therelore rank (B) must be egual to 1,
Therefore in this case also rank (&) = rank (B).

Casa IIl: rank (&) = 2

So A has to be nor-singular. i.e. |A| 20, Therstore, |B| = Al is also # 0. So rank (B) = 2.
Thersfore in this case also rank (A) = rank (B).

Therafora, in all three cases rank (A) = rank (B). So rank of A is N, then the rank of matrix B is
glso M,

0 1 1
Q.43 The dimensian of the null space of the matrix [ Ve ':’] is

{a) 0 &) 1
e} 2 (d) 3
[IM, GATE-2013 : 1 mark]
Solution: (b)

ordar of mafrix = 3
Fank = 2

- dimension of nullspace of A=3-2= 1.
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11 1 !
: Q.44 The rank of the matriz |1 -1 0] is

I T v
(@) 0 (b) 1 f
e} 2 () 3
| [EC, GATE-2006, 1 mark]
| Solutian: {c)
| Parigrm, Gauss elimination
! 19 1 11 1
| = W —%—J—)j“ D =2 4
| 00 0 " oo o .
|

Itz in row Echalan fomm
So its rank is the number of non-zero rows in this form.
e rank =2 I

Q.45 Let Abe a4 x 3raal mairix with rank 2. Which one of the following statemant is TRUE?
{a) Rank of ATA is less than 2.
(b) Rank of ATA is equal to 2,
(c) Rankof ATA is greater than 2.
id) Rank of AT A can be any number batween 1 and 3.

[EE. 2016 : 2 Marks, Set-1]

Solution: (b)
Result, Rank (AT A) = Rank (4)

1.5.1 Elementary Matrices
A matrix obtalned from a unit matrix by a single elemantry transformation is calied an elamaniry
makrix.

1.5.2 Results

1. Elementary transformations do not change the rank of a mairix.

2 Two matrices are equivalent if one can be obtained from another by elemeantary row or column
transformations. Equivalent matrices have same rank, since elementary transformations do not
change the rank. | |

3. The rank of a product of two malrices cannot exceed the rank of aither matrix. i.e. r(AB) < r(A) and
rfAB) =B} _

4 Rank of sum of two matrices cannot exceed the sum of heir ranks. r (A+8)= rlA) + r{B).

5 If A, B are two n-rowed square matrices than Rank (AB) = (Rank A) + [Rank B} -n.

1.6 SUB-SPACES:BASIS ANDDIMENSION

1.6.1 Introduction
A matrix can be thought of as an amay of ils rows as also an array of its columns. Further a row as wall
as & column is an orderad set of numbers. This view of malrix as an array of ordered sets of rows and
columng is very useful in dealing with various linear problems. This chapter will be devoted [0
consideration of such ordered sets of numbers.

g —
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162 Ordered sets of numbers

Apart from the above context, we have also often to deal with ordered Sets of numbers n gy
connections. Thus point in a plana and in space can respectively be representad by orderad p,,
and triads of numbers; the numbers being the Carlesian coordinates of the points. Again, S0Mmg g
the physical concapts such as velocity, acceleration, foroe, 1., can also bs represeried &s ordy,,
triads of numbers which are the resolved parts along three coordinate axes.

In addition to considering orderad sats of numbers, wa shall also consider two mmﬂﬂn!ﬂnmmm%
of Multiplication with Scalars and Addition of the same. Thus, if (a,. &, 8;) be an ordereq yj,
representing a force P, then the orderad riad (ka,, ka, ka,) represents anaiher farce whose magnigyg,
is Ikl times that of P and which acts along the line of action of P anc whose sense is the samg ,,
opposite 10 thal of P according as k is posilive or negative. Again. if (a,, 8,. 8y) and (b,, by, b,
two ordered triads representing two forces acting ata point, then the triads (8, +b,. 8, + by, a, +b,)
represents the rasultant of the two forces, for the sum of the resolved parts of forces along any (i,
equals the resolved part of the resultant of the forces along the same lina.

These considerations ibustrate the important and usaful principle that the same pieca of Mathematie,
can be inlarprated in seversl ways in relation to different applicalions.

We shall now proceed lo consider the generalization to the arbitrary ordered sets of numbers tg b
called Vectors, and also the oparations on the same,

Usually an entity having both magnitude and direction is called a Viector. We know, however, that thie
physical concept of a vector leads to a representation of the same by means of a triad of numbersg

163 Vector

Def. An ordered n-tuple of numbers ks called an n-vector. The n numbers which are callad COMponents
of the r-vector may be written in & horizontal or in a verfical line, and thus a vectar will appear aithar
A% a row or 8 column malrix. A vector whose components belong 1o a field F is said o be over £ A
vecior over the hield of real numbers is called a Real vector and that over the complex fiald is calied
a8 complax vector,

The n-vector space. The set of all n-vectors over a field F to be denoted by W (F), is called the n-vector
space over F. Tha elerments of the field F will be known as scalars ralatively to the vector space,

1.6.4 CompositionsinV (F)

The multiple kE of an n-vector & by a scalar kis the n-vector whose Components are the products by
k of tha components of E.

The sum §, + &, of two n-vactors §,, £, is the n-vector whoss components are the sums of the
corresponding components of §, and &,

As these two compositions on n-vectors are only special cases of the same on matrices, their laws
are the same as those in the case of malrices for those eompositions.

It is obvious that if . &, afe two r-vectors aver F. and k,, k, are two members of F.

Example:

E'ru'en. '§| - [E 3 0 I]I
-ﬁz = [3 1=-12]
£ = [8 10 -1 §)

compute the vactors

1. 26, +45,

2. 35 +4L,+ 55,

3. 35, +6-5
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1.6.5 Linearly dependentand Linearly Independent Sets of Vectors

1.6.5.1 Linearly Dependent Sets of Vectors
Det. A set |5, £,....£ ] of r veclors is said to be a linearly dependent set. if there exist  scalars Ky

Ky o k.

N:*t all zeto, such that k,§, + k., + .. + K, =0 where, zero, denotes ihe n-vector with companents
all zera.

1.6.5.2 Linearly Independent Sets of Vectors
Def. Aset [5,.5,.... £} of r vectorsis said o be a inearly independent set, if the set, is ot inearly
dependent, i.a. if K + 5+ . +kE =0.
=4 h.l =ﬂIH=ﬂ__,_,__Ih_r=|:]
1.6.5.3 A vector as a Linear Combination of a Set of Vectors
Deaf. ,ﬂla vaclor £ which can be expressed in the form [E= k£, + .. + k5] is saud 1o be a linear
combination of the set (£, , Sai--i5e} OF vECtOrS.
Example: Given a linearly dependent sat of vectars, show that at least one member of the set is a
linear combination of the remaining members of the sat
Example:
1. Show that the vectars [1 2 3], [2 - 2 0] from a linearty independent set.
2. Show that the vectors [2 3-1-1], [1-1-2-4], [3 13-2), [6 5 0 - 7] form a linearly dependent sat.
Also exprass one of these as a linear combination of the others.

3. Show that the set consisting only of the zsro vector, 0, is linearly dependant.
Solution:
1. Consider the relation
kyl1 2 3] + k[2-20] = zero
This relation is eguivalent to the ordinary systermn of liner equations
Ky + 2k, = O, 2k, ~ 2, = 0, 3, = 0
As k, = 0, K, = 0 arathe only values of k,, k, which satisfy these three equations, we see that the
given set is inearly indepandent,
2. The single relation
kol + Ko+ kol 4 kB, = O e (R
where §,, £, ., &, are the four given vectors in the given order, is equivalant to
2, + Ky 43k # Bk, = 03K, -k 4+ kg + 3k, =0
&, - M, + 3k, + Ok, = O, K, - dk;— 2K, =Tk, =0
As this system of 4 linear equations is satisfied by the values
ﬁ1=1,ug=1.k3=1.h*=—+{aﬁarsnlmgabmasyslmn] ... i)
which are not all zero, the given vectors form a linearly dependent set
Also we hava the ralations,
B, 48, +53-5=0 {obtained by substituting (1) in (i)
by means of which any one of the four given vectors can be expressed as a linear combination
of the remaining three others.
3. Let¥ ={0, 0 0...0) be an n-vector whose componants ara all zerp, Then the relatk nkX =0is
true for eome non-zero value of the number k, For example 2x=0and 220
Hance the vacior 0 13 linearly dependant.
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1.6.6 Some properties oflinearly Independent and Dependent Sets of Vectorg
In the following, it is understood that the veclors belong to a given vector space V. (F).
1. linisa linear combination of the set [E,.....£ ). then the set (n, &,. &,....5,] IS linearly depandep,
we have

n Il:1-!."" e k:r‘:-;l"'---"‘l":reﬁ
= ekl k- kE = 0
As at least one of the coefficients, viz., that of . in this latter relation is not zero, we establish thg
linear dependance of the set
M. &y )
2. Also,If E,.....E | i5 & linearty independant and [E,, ..., 1] i a linearly dependent sat, than M is
a linear combination of the sat [£...... E].
3. Evary super-zat of a linearly dependant set is linearly depandeant.
4. Itmay aiso be easily shown that every sub-set of a linearly independent set is linearly independan;

1.6.7 Subspacesofan N-vectorspaceV,
Definition: Any non-empty set S, of vectors of V_(F) is called a subspace of V_(F). if when
1. &, & are any lwo members of 5, then £, + £, is also a member of §; and
2. Esamember of 5, and k Is a scalar, then k& is also a member of 5.
Briefly, we may say thal a set 5 of vectors of V_(F) is a subspace of V (F) It it closed w.iL. the
compositions of "addition” and “multiplication with scalars”®,
Evary subspace of V_ conlaing the zero vector; being the product of any vector with the scaler zero,
Example: £ = [a. b, c]is a nan-zera vector of V. Show that the set of vectors k is a subspace of V.,
k being variable.

1.6.7.1 Construction of Subspaces

Theorem 1: The set 5. of all linear combinations of a given set of  fixed veciars of V_is & subspace
ol V.

Def.1 A subspace Spannad by a Sel of Vectors. A subspace which arises as a set of all linsar
combinations of any given set of vactors, is said to be spanned by the given set of vectors,

Def. 2, Basis of a Subspace. A sat of vectors is said lo be abasis of a subspace, if

1. the subspace is spannad by the sel, and

2 the sal s linearly indepandent,

It is important to notice that the set of vectors
8,={100..0Le,=[010..0)...e,=[00..01]

is a basis of the vector space V,, for, if

R.,E.|+F|.z,ﬂi+--.+kneﬂ = 0
then, k, = 0, ..., k, = 0 s0 that the sel is linearly independent and any vectar
= [a;8;....0.)
otV is expressible as
E‘ = 8yQy+ B a8,

Theorem 2: A basis of a subspace, 5, can always be selectad from a set of vectors which span 5.
Let By o E]

ke a sat of vectors which span a subspace 5,

If this sat is linearly independeant, thén it is already & basis. In case it ig lingarly dependent, then
some member of the sat is a linear combination of the preceding members. Dalating this membe,
we obtain another set which also spans 5.
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Continuing in this manner, we shall ultimately, in a finite number of staps, arrive at a basis of S,

Note: |1 ha_s el to be shown that every subspaca, S, of V_ possessas a basiz and that the number
of vectors in evary basis of 5, is the sama.

Exampla: Show that the iollowing two sets of veclors span the same subspace of V,(F),
1 {[2 <1 4]0 1 2)}: {le -1 18].[4 0 2]}
Same question for the sets of vectors for the same subspace of V,(F).
2 23 41234258 1.[a 5 7 9]}
Example: Show that the falicwing set of vectors conatitute a basis of
{l2 3 4]0 1 2][-1 1 1]}
Example: Determine a basis of the subspace sparned by the vectors:
{2 -8 1.3 0 1o 2 1.0 1 1)

Invariant Character of the Number of Vectors in a Basis:

Result 1: The number of members in any one basis of a subspace |s the same as in any ather basis.

Rasult 2; Evary basis of V, possessas n members, for, as seen belors, V_ possesses one basis of
N mEmoers.

Thearem 3: Every linear independent set of vestors [, E,. ... £] can be extended so as to constitute
a basis of Vi

Result 3: Every set of (n + 1) Vectors of V_ is Linearly Dependant: Fither the set is finearly
dapandent or linearly independant. In the casa of linear indepandance. the sat can be extended so
as to constitule 2 basis of V_ (by theorem 3 abova) and the basis thus obtained will contain at least
(n +1} mermbers, but this is nol possible (since, every basis of ¥, possesses axaclly n mambers),
Thus the set must be linearly dependent.

Rasult 4: Existenca of a basis: Every subspacs, 5, of ¥ has a basis.

Mote: The numbser of vectors in any basis of a subspace is called the dimension of the subspace. In
particular, we see that the dimension ol V_ isn,

1.6.8 Row and column spaces of a matrix. Row and column ranks of a Matrix
Lat A, be any m x n matrix over a field F
Each of the m rows of A, consisting of n elements, is an n-veclor and is as such a member of V_(F).
The space spanned by the fm rows which is a subspace of V, Is called the Row space of the m x n

matrix A.
Again sach of the n columna consisting of m elements is an m-vector and iz a member of V_{F).

The space spannad by the n columns which is a subspace of V_ Is called the Column spaca of the
m * N matriz A

The dimensions of these row and column spaces of matrix are respactively called the Row rank and
the Colhurnn rank of the rmatr.

Theorem 1: Pre-multiplication by a non-singular matrix doss nol alter the rank of a matrix.

In & similar manner, we may prove that post-multipcation with a non-singular matrix does not alter
the column rank of a matrix.
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1.6.8.1 Equality of row rank, column rank and rank
Theotem 2: Tha row rank of a matrix is the same as its rank.
Theorem 3: The column rank of @ matrix is the same as is rank. |
Corollary 1: The rank of a malrix is equal 10 the maximum number of its linaarly independent oy,
and also to the maximum number of its linearly independent columns. Thus a matrix of rm'.m F has
za1 of 1 linearly independent rows (columns). such that aach of the other rows {columnsl, is alingg,
combination of the same., : .
Corollary 2: The rows and colurmns of an n-rowed non-singular square matrix form linearly indepeandary
sets and are as such basesof V.

1.6.8.2 Connection between Rank and Span .
A set of n veciors X,. %, X, ... X, spans A" itf they are linearly independent which can be checkad by
constructing a matrix with X, . X... X, ... X,, 85 its rows {or colurnns) and checking that the rank of such g
matrix is indeed n. I howevar the rank i less than n_ say m. then the veclors span only a subspace of R

Example: Cheek of thevectors [1 2 -1],[2 3 0], [-1 2 5] span R

Solution:
1 2 -1
Step 1:ConstructamatrixA=12 3 0
-12 5
Stap 2: Find its rank
1 2 -1
Since 2 3 0| =1{15-00-2(10-0)- 1[4+ 3)
-12 5§
= 15-20-7=-12
# 0
S0, rank = 3

= The vectars are linearly independeant and hence span R
Example: Cheek if the vectors [1 2 3].[4 5 6] and [7 8 8] spanRY.

Solution:
[1 2 3]
Since, A= |d4 & B
_? E E-
12 3
hesa Al = |4 5 B
78 9
= 1(45- 48}~ 2(36 - 42) + 3(32 - 45)
=0
Sao its rank # 3
Since, L-l 3 = 5-8Bm-3al
g Rank = 2

Sothevectors [1 2 3], [4 & 6] and [7 B 9] span a subspace of R? but do not span R
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169 Orthogonality of Vectors

1.

Two veciors X, and X, are arthogonal ift each is non zero and the dot product X, X, = 0.
Example: The vectors [a b c]and [d e 1] areorthagonal ift

[ahc]'x[dai]:ﬂ
e ad+be+cl =0
Example: The vectors [1 2] and [-2 1] are orthogonal since

e

Mx-2)+{2x1)
0

Example: The veetors [1 2 3] and [-1 2 5] are not orthogonal since
Mx-1)+2x2)+{3x5) = 1820

[ 2f (-2 1)

- Three veclors X, X, and X, are orthogonal iff each is non zero and they are painwise orthagonal

| 3{,_'}:? = 0

and A% =0

and XK =0

Example: Thevectors [1 0 0], [0 1 0]and [0 O 1] are orthogonal since
[+oof[o 10] =0 o0

and [0 1 0f[001=[0 0o 0

and [ 0 Of[0o 0 1] = [0 0 0]

. W nvectors X, X, X, .. X each of which is in F". are orthogonal. then they ara suraly linaarly

independent and hence span R and therafore form a basis for AT

Example: Thevectors[1 0 0], [0 1 0jand [0 0 1] areorthogonal and hence are linearly
independent and hence span A They form a basis for RY.

Thevectors [0 —2], [-2 0] are orthogonal and hence are finearly independent and span R
and form a basis of A®.

. The set of n vectors X,, X,. X,. ... X, are called orthonormal if they are

(a) orhogonal and
(b) if each vector has unit length.
The two conditions together can be written as
1 i i=]

Sty 5":{1: PY
A sat of orthogonal vectors X can be converied 1o a set of orthonormal vaclors by divising each
vector in the orthogonal set by its length (Euclidean norm || x11).
Example: The set[1,2, 1].[2. 1,-4] and [3. -2. 1]is an orthogonal basis of vectors for F®, since
these are painwise orthogonal and hence are linearly independent and hance span .
To convert this sat to an orthonormal basis of R®, we need to divide each vector by its langth

Hull = f1+4+1=6
Hull = Ja+1+76 = /21

Scannea py camaoacanner




38 | Engineering Mathematics for GATE and ESE Prelims
i

)l = fB+a+1 =13
g == 1

i o 2 i =4
somavorrartuss ot 5 7575 ) (7 21) = (i 7 7

-

ILLUSTRATIVE EXAMPLES FROM GATE

Q.48 Choose lhe CORRECT sot of functions, which are linearly dependent.
(b) cos x, gin x and lan X

(@) sin x, sin® x and cos® x |
(c) cos 2 x, sin® x and cos® x (d) cos 2x, sinx and cos X
[ME, GATE-2013, 1 Mark)
Solution: (c) N _
Since. coe 2 ¥ = aos?y — sinfx, therelore cos 2 x is a linear combination of sin® x and cos? x ang

hance these are lingarly dependant.

-__Iu T -E T E T
O0A7T P=]|-1]| . 0=|-5| andR=|-7| are lhree veclors.
| 3 9 12
An orthoganal sat of vecters having a span that contains P, Q, R is
[ 4 [ -4 5 8
[a) |-3] [-2 (b} | 2 f 2
G 3 | 4 -11 -3
6 -3 3 [ 4 1 5
ey | 7 2 g @ |3 3 3
=1 -2 - [ 11 3 4q

[EE, GATE-2008, 2 marks]

Solution: (a)
We are hooking for arthogonal veclors having a span that contaln B, G and R.

& 4
Take chaice (&) [—G} and {— I

6 3
Firstly these are orthogonal, as can be seen by taking their dat product

=fixd+-Sx-2+6x3a0
The space spannad by (hese two vactors is

BE

-6 4
The spanof [-3| and '2} contains F, O and R, Wa can show this by successively selting

& 3

Eq’uﬂﬁ-l:ln {I} [} Fl| Q and R ang bb’ ana and Eming ficar Hl and kﬂ uniquﬂl?_
Motice also that choices (b), [c)and {d) are wrong since none of them ara prihogonal as can b

gean by [aking pairwise oot products.
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Q.48 T"'ﬂfjﬁ"w vecior is linearly dependent upon the solution 1o the previous problem

¢ -2
(2) g @) [_”}
iy 30
3 13
(e) |4 a | 2
3] .3
Solution: (b) [EE. GATE-2006, 2 marks]

Thevector [-2 —47 30] Is linearty dependent upon the solution oblained in previous question
namety [-6 -3 6] and [4 -2 3]
6 3 6

4 2 3|
-2 =17 30

This can be easily cheeked by finding determinant of

£ -3 B
4 =2 3
-2 —17 30
Hence, It is linearly dependent.

= 880 + 51) + 3(120 + 6) + 6(-68-4) = 0

Q.49 If the rank of a (5 = &) matrix O is 4, then which one of the foflowing staterments is comect?
(@) U will have four linearly independert rows and four Enaarly independent columne
() Cwill have four lingarty independent rows and five limaarky independent columns
(e} QOT will ba invartibie

(d) Q"0 will be invertible [EE, GATE-2008, 1 mark]
Solution: (a)

IFrank of (5 » 6) matrls is 4, then surely it must have axactly 4 Inearly independert rows as well
as 4 linearly indepandent columns, SINCE rark = row rank = colurmn rank,

Q.50 It is given that X,, X,. ... X, @ M non-zerp, orthogonal vectors, The dimension of the vector
space spanned by the 2M veclors X, Ky, .., X, K, R, .. =K, is

f@) 2 () M+1
ey M {d) dependenton the choice of X,, X,. .. ¥,,
[EC, GATE-2007, 2 marks]
Solutlon: (c)

Since (X, X, ... Xy,) are orthogonal, they span a vector space of dimension M.,
Since (-X,, X ... Xy) are finearly dependent on X,, X, ... X,,, the sat (X, X,, X, ... X, -X,,
Ky 1o —¥yy) will also span a vector space of dimensson M only

Q.51 Consicer the set of (column) vectors defined by X = {x & R3 | x, + », + %, = 0, where
kT =[xy, %, %,]"}. Which of the following is TRUE?
i@y {[1,-1, 9|7, [1,0,-11"] is a basis for the subspace X,
i) {[1,=1, 007, [1,0,=1]"} is a linearly independent set, but it does not span X and therefora is
not & basis of X
lg) X is not a subspace for A3

{d) Mone of the abova [CS, GATE-2007, 2 marks]
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Solution: (a)
To be basis for subspace X, two conditions are to be satisfied
1, The veciors have to be linearly independent.
2. They must span X.
Here, K-{1EH3II1+:{?+:3={H
X' =[x xl"
Step 1: Now, [[1, - 1. 0], [1. 0, - 1'] is a linearly independent set because one cannol be
obtained from another by scalar multiplication. The fact that it is independent can also be

1 =1 0],
astablishad by seaing that rank of [1 a _I] s 2.

Step 2: Next, we need to check it the set spans X
Here, X = te A* | x, + x4+ %, =0

—I"[| e I":E
The general infinite solution of X = Ky
Kz

) k 0 K, k . )
Chmngm.k?as[h;] = [k] and k. = [J.wngatﬂﬂmarlynnﬂep&ndaﬂ solutions, for X
[k =
X = Olor| k
K 0

Mow since bath of these can be generated by finear combinations of [1, =1, 0] and [1. 0, 1],
the set spans X. Since we have shown that the set is not only knearly independent but also
spans X, therefore by definition it is a basis for the subspace X

Q.52 Let Fnﬁ ;]-Ennsldanha sat Sof all vectors [;l suchthat &2 + B¢ = 1 whara (E]:P[;] _

Then Sis
i
(a) acircla of radius 10 {p) acircle of radius 7o
ic) an ellipse with major axis along U] (d) an ellipse with minor axis along [:]
[EE, 2016 : 2 Marks, Sat-2]
Solutlon: (c)
g 1) = a
1 3]l T |b
ax + ¥=2a
r+3y=b
E-"i E ] ﬂ; = 1
= 102 + 10y? + 122y = 1

1
Ellipse with major axis along [I] .
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Q.53 Ifthe '.I'E:EIEHE 8 =(1,0.2), g = (0, 1, 0) and &, = (- 2, 0, 1) form an orthogonal basis of the
three-dimensional real space A7, then the vector u = (4, 3.~ 3) e A?can be expressed as

- 1 2 11
{a) U= 531_39;—EE1 {hJ u=—EE1‘-35'2+EE;
{E} U=‘-EE:+EEE~I-HE-\3 {d] u——EE + 3a —D
5 5 = 51 2 59-13
Solution: (d)
4 1 0 -2
3 | = a|0|+6|1|+c| D
-3 2 0 1
a-2ce= 4
b=3
2a+0=-3
b=3
E"_ —H
5
2 11
u= ~5+36; -7y

1.7 SYSTEM OF LINEAR EQUATIONS
1.7.1 Homogenous Linear Equations

Suppose,
Ayqiy + 8yaka F o A8nX, =0
59111 + EEI? e e 4 531:11 —. '|:|

s L e D ()
By + BpaMa +oneennn + 8w DJ
ks & systemn of m homogeanous equations in f UNKNOWNS X, X, .. X
- ——

- PO PO - P

Lat A =

ALl IV ”] ALTLINUALTILTV]
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where A, X, Oara mxn,nx 1, m = 1 matrices respectively. Then obviously we can write the systen,
of equations in the form of a single matrix aquation AX = 0 - (i)
The matrix A is called coefficient matrix of the system of equation (i)

ThesatS={x, =0 % =0, . % =0}ie, X=0isalways a solution of equation {i).

But in general thare may be infinite number of solutions to equation (i)

Again suppose X, and X, are two solutions of (ii). Then their inear combination, B,X, + R, when R,
and H, are any arbitrary numbers, is also solution of (i),

1.7.1.1 Important Results
The numiber of linearly independent infinite solutions of m homogenous linear equations in nvariables,
AR =0,is (n-r), where ris rank of matrix A.
n-rig &lso the number of paramatars in the infinita solutian

1.7.1.2 Some important results regarding nature of solutions of equation A X =0
Suppose there are m aquations in n unknowns. Then the coefficient matrix A will be of the type m «n,
Let r be rank of matrix A. Obviously r cannot greater than n. Therefore we have either r= narr<n,
Case 1: Inconsistency. This iz not possible in a homogenaous system since such a system is
always conslstent (since the frivial solution X = [0, 0, 0...J always exists for a homogeneous system)
Case 2: Consistant Unigues Solutior: Il r = n; the equation AX = O will have only the trivial urique
solution X = [0, 0, 0...]%
Mote: Thatr=n = |Al 201l.e. A is non-singuiar.
Casa 3: Consistent Infinite Solution: If r < n we shall have n - r finearly independent non-trivial
infinite solutions. Any linear combination of these (n - r) solutions will also be a solution of AX = O,
Thus in this case, the equation AX. = O will have infinite solutions.
Note: Thatr<n=|A|=0ie. A is a singular matrix.

1.7.2 System of Linear Non-Homogeneous Equations

By + Byp¥g +oo t By = by
By + BppXy + .o+ Ban¥p = s

i

B + BppXa +oooirovn # Bty = By
be a system of m non-homogenous equations in n unknown, s

If we write Am B e Ao,
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ﬁem AX.Baremxn,nx1,andmx 1 malrices respectively. The above equalions can be writtzn
in the form of a single matrix equation & ¥ = B
Any set of values of x,, x ......... *, which simultanecusly satisfy all these equation is called a

solutions of the system. When the system of equations has one or more solutions, the equation
are sald 10 be consistent ctherwisa they are eaid to be Inconsistent”.

A 8.8y By
The malrix [A B] = 21 Bp...dpy ba

ﬂm1 B""I.E'"'B‘I'F'n bm
s called augmentad matrix of the given system of equations.
Candition for Consistency: The system of squalions AX = B is consistent i.e,. possess a solution
iff the coefficient matrix A and the augmented matrix [A B] are of the same rank. i.e. r(A) = (A, 8).
Case 1:Inconsistency. I r{A) « r{A |B) the system A x = B, has no solution. We say that such a
system is inconsistent.
Cases 2 and 3: Consistent systems: Mow, when r(A) = r(4 | B) = r., Tha system is consistent and
has solution,
We say, that the rank of the system s r. Mow wo cases arisa,
Case 2: Consistent Uinique Solution: If r{A) = r(a | B) = r = n (whera n i the number of urknown
variables of the aystam), then the systam is not only consistent bt also has & unique solution,
Case 3: Consistent Infinite soiution: If r{A) = r{A | B) =r < n, than the system is conaistent, but has
infinite number of solutions.
In summany wa can say the following:
1. I r(a)2r(A] B) (Inconsistent and hance, no solution)
2. HrlA)= rtﬁ.] B} = r = n (consistent and unigue solution)
3. Ifria) = (A | B) = r < n (consistent and infinite solution)
The rank of a system of eguations as well as s solution (T it exists) can be obtained by a procedura
called Gauss - Eimination method, which reduces the matrix A to its Echeldon form and then by
counting the number of non-zero rows in that malrix we get the rank of A,

ILLUSTRATIVE EXAMPLES FROM GATE

01.54 Consider a non-homogenacous system of linear eguations reprasenting mathematically an over-
determinad system. Such a system will be
{a} consistent having a unique solution (b} consistent having many solufions
{c} inconsistent having & unigue solution {d) Inconsistent having no solution
[CE, GATE-2005, 1 mark]
Solution: (a), () and (d) all possible.
In an over datermined system having more equations than varables, all three possibilities sl
axist (&) consistent unique {b) consistent infinite and (d) in consistent with no situation.

o Te— e -
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Q.55 Su:m.:tu:mI'n:wl-.hnausg..--s.kwaq!'rl-:Had'rrannl’::r_.r’rh«':l9&1-l.':1i:fl:ql.lali.m"ls-ﬂf‘.uf+f=1i!=’5‘-i';-'-"'1='-E’E"“:"ﬁﬂ"-'-Etlrt:-;.-r,i
fa) x=0:y=1:2=4/3 My x=0.y=122=2

(d) non-existent

= ;y=12z=2

Solution: (d) |
The augmented matrix for given system is
0 4 3|8 2 0 -2
9 @ -1|9| Echegpwmandindrew i 4 3 (B
3 2 0|5 3 2 0|5
then by Gauss elimination procedura
[2 0 -1|2 i 20 2] _ o 2 0 -1 8
04 3|8|l—2",|o4 3 ﬂ]-—tiaﬂda 8
3 2 0|5 g 2 3/2|2 00 0]-2

For last row we see 0 = -2 which is inconsistent. Also notice that r{A) = 2, while r{A IBy=3
(r(A) = r{A | B) maans inconsisiant).
. Solution is non-existent for above systam.

Q.56 For what values of @ and B, the following simuflaneocus eguations have an infinite number of

solutions?
Key+Z=5 X+Iy+dzed ¢+ 2y+uz=f
(a} 2.7 (b) 3, 8
{c) B.3 (o) 7.2 [CE. GATE-2007. 2 marks]
Solution: (a)
The augmented matrix for this system s
[1 1 1|5
13 3 'Ell]
12 alB
Lizing Gauss-eémination method we get
[1 1 1|5 11 1 5 e d 11 1 ]
1339—H—n1—p"5':_j|"lD22 i =25 % 2 4
|12 alp 01 a-1[p-5 00 a-2|pg-7
Mow, for infinite solution last row must ba completely zem
i.8. a-2 andf-7 =0
= a=Zandf = 7
Q.57 The following simultaneous equations
i+y+i=43
X+2y+32=4
K+dy+hz=6
will NOT have a unigue solution for k egual 1o
@) O (b) 5
fc) 6 (d) 7

[CE, GATE-2008, 2 marks]
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Solution: {d)

11 1|3
The augrmented matrix for given system is |1 2 3|4

14 k|6
Using Gauss elimination we reduce this to an upper triangular matrix 1o investigate its rank.
11 183 1T 1 1|3 11 1 |3
12 3|4|-—Ffslo0 1 2 gm0 1t 2 |1
14 k|6 0 3 k-1|3 [0 0 k=70
Mow if kw7

fark (A) = rank (A | B)=3

“» unique solution

If k= T.rank (A} =rank (A IB)=2
which is less than number of variables

-~ whan k=7, unique solution is not possible and only infinite solution is possitle.

Q.58 The eigen values of matrix ﬁ 2] ara

ig) —-2.42 and 6.86 (b} 3.48 and 13.53
{c) 4.70 and 6.86 (d) 6.86 and9.50

[CE, GATE-2012, 2 marks)
8 5
5 8
The characteristic equalion is

g-4 5
‘ E-—:J 2l

Solution: (b)

We need eigenvaluesof A

&
(9-1)(B-4)-26 = 0
= 2170+ 47 = 0
So aeigen values are.
A= 3481353
(.59 For what value of p the following set of equations will have no solution?
2x+ 3y=5
3y + py= 10
[CE, GATE-2015 : 1 Mark, Set-1]
Solution: . _ . _
Given system of equations has no salution if the lines are parafiel i.e.. their siopes are equal
2 3
a p
=3 p=45
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(.80 Consider the system of simultaneous eguations
K+2y+2=6 ; 2a+y+22=6 ; x+y+2Z=5

This system has
{a) unigue solution (b) infinite numbar of solutions
{c) naosolution {d] exactly two solutions
[ME, GATE-2003, 2 markg)
Solution: (c)
Given squation are
Ke2y+Z =6
24+y+22 =6
X+y+Z =5

Given system can be written as

2 1% B
21 2|ly] = |6
11 1)|z a

1 2 1|86
Augmented matrixis |2 1 2|6

T 11
By gauss alimination
1 2 1|8 1 2 1|8 : 1 2 1|8
21zﬁ—r‘ﬁﬁz—§:l—;ﬂ-an—ﬁiiﬂ*—}u—au—ﬁ
T 1 115 0 =1 a8]=1 0 0 Of1

(A) = 2
A | B) = 3

Since the rank of coefficient malrix is 2 and rank of argument malrix is 3, which is ot equal.
Hence system has no solufion §.2. system is inconsistant.

Q.61 Ais a3 x 4 real matrix and A x = b iz an inconsistan system of equations, The highest
passible rank of A is

®.1 (b) 2
w8 @ 4
Solution: (b) [ME. GATE-2005, 1 mark]

A ) < min{m, n)
5o, Highest possible rank = Leastvalue of 3and 4.
i.e. highest possible rank (based on size of A} = 3
However if the rank of A = 3 then rank of [A|B] also would be 3. which means the system

would becoma consistent. But it is given that the system is incons;
istent. So k
of A could only be 2, the maximum ran

Q.82 For whal value of a, if ary, will the lollowing system of equations in x, v and z have a solution?

eX+I=4 | X+y+z=4 X+ 2y-7=g
(@) Any real number {b) O
c) 1 {d) There is no such value

[ME, GATE-2008, 2 marks]

i
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Solution: (b)

23 0
Augmented matrixis [1 1
1 2

(1 I L

=1

Perlorming guess-alimination on this matrix, we get,

2 3 ﬂll-ﬂl ot |23 0 4 2 3 0|4
11'|4——Hu—_-7-;—~u—1r21z—“&*‘1-4n-u212
12 -1{a ' |o 2 -1|a-2 0 0 Ola

Wa=0,r(A) = 2and 1(A | B) = 3, hence system will have no salutions.

g;u: U}I'{-“-"-} = t[A | B) = 2, then the system will be consistent and will have solution (Infinite
ion).

Q.83 Consider the lollowing system of equations
2Xy + Xy + Ky =0
%=y =0
Ky + ¥ =0
Thig system has
(a) aunique solution {o) no solution
(c) infinite number of solutions {d} fve solutions
[ME, GATE-2011, 2 marks]
Solution: (c)
The Augrmentad matrix
21 1|0 :
[A|B] = |0 1 ﬂ]
11 0|0

Performing gauss elimination on [A | 8] we gel

21 110 21 1]0 2 1 11D
01 -1l0] s [0V 10 mls Jo 1 -1|D
11 0|0 o X 1o "lo o oo

Rank (A) = Rank (A |B)=2< 3
Sq infinile number of solutions ara obiained.

QB4 5x+2y+2=4
xey+2z=5
E=y+zI=1
The system of algebraic given below hes
{a) A unigue solution of X = l.y=1landz=1
() only tha two solutions of (x=1,y=1,2= Nand(x=2y=1,z=0)
(c) infinite numbes of sclutions

id) nofeasible solution
[ME, GATE-2012, 2 marks]
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Solutlon: (c)
The glven system |s
K+ 2y+1 =4
2X+Y+2Z =5
K-y +2 =1

Use Gauss elimination method as lollows:
Augmeanted matrix is

1 2 1|4
(WB] = |5 4 2|5 —%
1 =1 1|1}
:1 2 1| 4] i 2 1] 4
o -3 0}-a _Pa-F 410 -3 0|3
0 -3 0[-3 g o 0|0
Rank(A) = 2
Rank (AB) = 2
S0 Rank{A) = Rank{AB)=2
System is consistant
MNow systam rank ra2
Murmbar of vanables n =3
r<nn
/ So wa have infinite number of solutions.

Q.65 In the matrix equation Px = g. which of the following is a necessary condition for tha axistence
of a1 least one solution for the unknown vector x
{a) Augmented matrix [Pa] must have the same rank as matrix P
b} Vector g must have only non-zaro elemeants
e Matrix P must be singular
{d) Malrix P must be sguare

[EE, GATE-2005, 1 mark]
Solution: (g)

Rank [Pq] = Rank [P)] is necassary for existence of at least one solution to Px =g

Q.68 For tha sat of aquations
By Doy + Ky # 46, =2
3x, + By + Ay + 12¢, =86
the following statemant is frue;
(&) Only the trivial solution x, = x_ = x, = x, = 0 existe
(b) Thera are na salution
{z) A unigue non-trivial solution existe
{d) Multiple nor-trivial solutions axlst [EE, GATE-2010, 2 marks)
Solution: (d)
Moo+ 2oy o+ Xy b Ay, = 2
I, + 6y + Iy + 12x, = B
2
B

. 12 1 4
The augmenied matrx is la & 3 12
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Ferforming gauss-elimination on this we gat
121 4(2] R,-3R, [1 2 1 4|2
36312 i 0

B 0000
| rank (&) = rank (A | B)=1
50, system Is consistant,
Since, system's rank = 1 is less than the number of variables. only infinite (multiple ) non-trvial

golution exists,
. 2 =2 x 0
Q.67 The eguation L
B M RN
: .:l:-l ﬂ
(a) nosolution (b} only one solution [, (=|q
2
{c) non-zero unique solution [d) multiple salutions
[EE, GATE-2013, 1 Mark]
Solution: (d)
2 — Xy L i
T =1|Ix:| |O
D=2, = 0
#-% =10
= _?0:1 = :1;2_

I8 Xy arnd X, are ara having infinite number of sclutions.,
= Multiple solutions are these.

0.68 Given a system of equations:
X+ 2y + 22 =D
Bx+y+32=D,
Which of the following is true regarding ils salution?
fa) The system has & unique sokution for any given b, and b,
(b} The system will have infinitely many solutions for any given b, and b,
(c) Whether o not a solution exists depends on the given b, and by

(d) The system would have no solution for any values of b, and b,
|EE, GATE-2014 : 1 Mark, Set-1]

Solution : (b)
, 1 2 2|y _ %A 1 8 =&
Thaaugmentgdmatn:fmtrdssﬁtamls [:-:. 1 3|u2] oo [D R

Mow gauss elimination is completed. We can see that the Rank(A) = 2.
RankiA|B) is also = 2 (doas not depend on value of b, and b5,

So RankiA) = Rank(A|B) < Number of variables = 3

Therefare the system iz consistent and as infinitefy mary solutions.

b,
ba — 50y

0.689 We have a set of 3 linzar aqualions in 3 unknowns, ‘X= Y means X and ¥ are equivaken
statements and ‘X # Y' means Xand ¥ are not equivalent statemants.

P : There is a unigue soiuticn.
0 : The equations are linearty indapendeant.
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R : All sigenvalues of the coefficient matrix are nonzero.
% - The determinant of the coefficient matrix is NONZE0.
Which one of tha fallowing is TRUE?

(@) P=Q=efA=S
c) P=Q# A=5

(b) P=R# O=5

d) PR Q¥* A% S
[EE. GATE-2015 : 1 Mark, Set.2)

Solution: (a)
By + By X + 83Xy = by
By Xy * By Xyt B3 = b,
By Xy 4 Sy Xy + Xy =
8y 8z Bial|: by
3 8p 8u||l|=|b
3y 8 Bg]l% )

It | A] 20 then AX = B can be written as X = A™'8. It leads unique solutions.

If | A= 0 theni,- A, ky» 0 each A, is non-zero.

I | A| # O then all the row {column) vectors of A are linearly independent.

Q.70 The system of linear equations
dx + 2y =7
2x+y =6
has
{a) aunique solution (D) no solution
{g) an infinite number of solutions (d) exacthy two distinct solutions
[EC, GATE-2008, 1 mark]

Solution: (b)
The systermn can be written in matrix from as

61 - [

4 2|7
The Augmented malriz [AIB] i given by [E " E]

Performing Gauss elimination on this [AIB] as follows:

2
4 2|7] Fe-5h  [4 2| 7
[2 '1JE] -np.:,'m [u u‘sm]

Now Rank [AlB] = 2 (The number of non-zero rows in [A1B)
Rank [A] = 1 (The number of non-zero rows in [A])

Since, Hank [AlIB] = Rank[A],

The systam has no solution.

Q.71 The system of equations
X+y+2Z=B | R+dy+Bz=20 | R+ dy+dzm=p

LScanned by CamScanner



MA
DE EASY Linear Aigebra | 5
has NO solution for values of A and p given by
:’:; :::'.H=EU {b) A=6 p=20
q =20 {d) A=86 p=20
i [EC. GATE-2011, 2 mark]
The augmented matrix for the system of equations is
(11118
[AlB] = 14 620
144]n
11 11 @
(el = {14 6 | 20 [A, = R,-R,
(00 A-6B{u-20

A =6and w20 mhen
Rank (A1B) = 3and Rank (A) « 2
| Rank (AB) = Rank (4)
~- Given system of equations nas no solution for & = 6 and p » 20,

Q.72 The system of linaar equations

2 1 3Ma o
3D1b:—¢hﬂ$
1 2 5)le 14

{8) aunique solution

(B) infinitely many solutions
(c) nosolution

{d) exactly two solutions
[EC, GATE-2014 : 2 Marks, Set-2
Solution : (b) ]

Q.73 Consider a system of linear aguations:

x =2y + 3z = -1,
=3y + 47 =1, and
-2X+ 4y -Gz = k
The value of k for which the system has infinitely many solution is

[EC, GATE-2015 : 1 Mark, Set-1]

Solution: (2)
x-2¢+ 32w -1,
x-dy+4z= 1 and
-2r+4y-Bz=k
T4 3 1w
[A:B]=]| 1 3 4 : 1
-2 4 6 K
A = A, - A, Ay—+ A+ 2R,
1-23: -
0 -1 1. 2

0 DO0: k-2
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For infnite may sokution
pla : 8) = plA)
= r< rumber of yariahles

p{A;E]:E
k=-2=0
ko=

Q.74 Consider the following System of linear equalions
2 1 -4 x1 [o
4 3 -12|{y|=]®
1 2 8|llz] |7
totice that the second and ihe third ©
For how many values of e, G088 lhis sy

olumns of the coeflicient malrix are linaarly dependent.
stemn of equations have infinitely many solutions?

(@) 0O (b) 1
fe) 2 {d) infinitely many
[CS, GATE-2003, 2 marks]
Solution: (b)
2 1 -4 |
Theaugmenmljrnam::far:hegiuen systemis |4 3 —12 &l.
1 2 -8 |7

Perorming Gauss-Elimination on tha abyove matrix

2 1 -4 i ]
3 ] B T 0 1 —4|6-20
4 3 -12|5| 250 1 -4|5-Z —Fa-dizhy , Ga A i
12 -8|7 0 3/2 -B|7-al2 “T'
Haw for infinite solution it is necessary that at least one row must be complately zer.
S -1
3 = 0

o = 1/5isthe solutlon
+. Thare is only ane valug of @ for which infinite sobution exisis.

Q.75 How many solutions does the following system of inear equations haveT
X+ 5y=—-1 ; Xx-y=2 ; Xx+3y=3

{a) infintely many (b} two distinct solutions
(c) unigue {d) none
[CS, GATE-2004, 2 marks]
Solution: (c)
- ¥ + 5‘5!' = =1
K=y = 2
X4y = 3
-1 5|-1
The avg mented matrixis | 1 ~1[ 2 |.
1 3|3
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Using gauss-elimination an above matrix we gat.
r‘; § |=

| “E‘-ﬁiﬁ'—*[

| 1 3|3

-15_1 A B~

s

0 8|2 0 0|0

Rank [AIB] = 2 {number of non zero rows in [AIB])
Rank [A] = 2{number of non zero rows n [A])
Rank [AIB] = Rank [A] = 2 = number of variables
. Unique solution exists. Comact choice is (g).

(.78 Consider the lollowing system of equations in three real variables x,, », and x,
2Ky = Ko + Mg = 1
3, — 2%, + Bty = 2
- %y =4, + %, = 3
This system of eguations has
{a) nosolution
(b} a unigue solution
(e} more than one but a finite number of solutions
(d} an infinite number of solutions
[CS. GATE-2005, 2 marks]
Solution: (b)
1
2
3

2 =13
The augmented matrix for the given systemis |3 -2 §
S |

Using gauss-elimination method on above matrix we get.

2 <131 _ o 2 -1 3|1
7 2 slo| ——214 o -2 w2 |12 _“:lﬁ_, -1;’2 1,!2
72

1
-1 -4 1|3

1
12

Ay oh -

2 0 =8/2 bf2
Rank([A | B]) = 3
Rank ([A]) = 3

Since Rank ([A | B]) = Rank ([A]} = number of variables. The system has unique sclution.

Q.77 The following system of eguations
x,+x;+22'{3='l t :1+Ex._,+3x3=2 . h1+4}¢2+ﬂ:ﬁ3=4
has a unique solution. The only possible value(s) for a is / are

{a) O (b)) aitherd or 1
{c) oneof 0,1 or -1 (d) any real number other than 5
[CS, GATE-2008, 1 mark]

Solution: (d)

The augmented matrix for above system is

11 2|1 14 2 1% 2

12 32| =01 1 |1 B, 054 4 |y

14 al4 03 a-2{3 00 a=5lo

Mow as long a8 a -5 # 0, rank (A) = rank (A|B) = 3
=~ Acantake any real value except 5. Closest commect answer is (d).
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Q.78 Consider tha following system of eguations:
x+ 2y =1
dr + Tz = 1
r+y+2=3
x-2v+7z=0

The number of solutions for this systemis .
[EE. GATE'EUI"! : 1 erkl Eat“‘l

Solution :
Given:
A+ 2y =
dr+ 7z =
E+Yy+2 =
r-2+TZ =

E+Yy+Z =
._::—E?+?';_u
3y -6z =

il & fa £ ) ot =i

P

|

2y-4dz =
/! 2y +3x = 1
+7z = -
dx+72 =

r =

hy fal =

r =
Ax+2y = 1

y = -5/2
= dr+ 7z = 1
B+72 = 1

I

(Put x =2)

z = -
The number of solutions for this systam is one. x = 2, y = -5/2 and z = =1 is the only solution,

Q.79 If the following system has non-trivial solution,
px+qQy+rZ=10
Qx4+ Iy +pr=10
My py+gz=0
than which one of the tollowing options is TRUE?
(B) p=g+r=00rp=g=-r (b) prg-r=00rpm-g=r
) prg+r=0orp=gs=r (M) p-g+r=0orp=-—g=-r

[CS, GATE-2015 : 2 Marks, Set-3]
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Solution: (c)
P+ gy +r2 =0
Qx + ry+ pz = 0
M+py+qz=0

qr
r ol The system is A3 =0
p

LEIA=|
Q

This is & homegenous system. Such a system has non-trivial solution iff 1&1=0.
P gr
qrp
rpq
plar— ) - g - pr) + Apg - A} = 0

P+ +~2-3pgr=0

p = q = r salizfies the above eguation,

Also if p+ g + r=0 then a can be ransformad into cne of the row as completely 0’ as

= 0O T

Sa. =

shown below
pqr P+g+F P4+Q+r pEgQ+r
g r p|—= q r p
rpq r p g
0 0 0
=lgr p|l==0
rpg

Therafore the corect option is (c)whichis p+ g+ r=0orp=g="

01,80 Let A be an rr x nmatrix with rank r(0 < r < n). Then AY = 0 has p ndapendent solutions, where

pis
(a) r (b) n
(e} n=-r id} n+r
[IN, GATE-2015 : 1 Mark]
Solution: (c)
Given A¥=0

PlAL L n = Fl0<r<n)
= Number of indepenceant solutions = mufity
We know that

rank + nullity = n
rep=n
p=n=r

Q.81 Consider the following linaar syslem.
x+2y=-3z=a | 2+3y+Ix=b . Sx +9y-6Z=c¢C
This system is consistent f a, b and ¢ saticfy the equation
{a) Ta-b-¢c=0 (b} 3@+ b-¢c=0
£) 3a-b+c=0 (d) Ta-b+c=0
[CE, 2016 : 2 Marks, Sat-1I}
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“‘H-DE“E'I"
——
Solution: (b)
We can reprasani the system of equation in matrix form as
1 2 =3)|=x El
2.3 allyl=1|P
2 9 6|z | C
[1 2 -3 : &
[A:B]l=12 3 3 : b
o 2 £ ;0
By elementary operation A, — Ay - (3F, - A,).
1 2 -3 a
2 3 A 1]
A =
el 0 0 0 : ¢-3a-b
For consisting of system, c—3a-b =0
2 5ljx 2
Q.82 The solution to the systemn of equations is -4 3lly - _an
(a) 6, 2 (b) -6, 2
{c) -6, -2 (d) B, -2
! [ME, 2016 : 1 Mark, Set-1]
Solution: (d)
2 Bllx] e
—4 3||ly] T |30
2 5§ 27
—4 3 -a0|
.H‘E+2.H'1
2 5 27
0 13 -28)
13y = -26
or :r":—?
2T+EJ.I’=E
25 + 5(-2) = 2
2 =2+10
2 = 12
or r=8

Q.83 Consider the systams, each consisting of m linear aqualions in n variables.
I. I m< n, then all such syslems have a solution,
Il. W m= n then none of these sytems has a solution.
. I m = n then thers exists a system which has a sclution
Which ona of the following is CORRECT?

(a |1, 1 and lll are true (o) Onby Il and 11l are troe
(e} Only Il is lrua (d) Mone of thamis true
[CS, 2016 : 1 Mark, Set-Z]

ﬂ-ﬂp
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i

Solution: (¢)
. m< n{system may still be inconsistent 80 incomrect)

L. m > n{rank may still be equal to nof hence solution May axist 50 INCOMECt).
. rh = nlsome system rank may be equal to nand hence may have solution 8o correct).

So only [l is correct.

1.8 EIGENVALUES AND EIGENVECTORS
Let A=[a], e any n-iowed square matrix and A iz ascalar. T
value problem. We wish to find non zera sclutions 1o ¥ satisfying
non zero solution to X are called as the eigen vectors of A. The correspond

gigen values of A

he equation AX = AX 8 called eigen
the eigen valua problem. and these
ing A values are callad

1.8.1 Definitions
Tha mairix A - Al is called charactaristic matrix of A, whera | is the unit matrix of order n. Also the
datarmminant
By, Byzeeen iy
By ﬂzg_;...........ﬂh

|a-uil| =

9 BnpeBrnod
which is ordinary potynomial in A of degreen is called *characteristic polynomial of A”. The equalion
| A~ 31| =0 i called "characteristic equation of A",
Characteristic Roots: The rools of the characieristic equation are called =characteristic roots or
characteristic values or lateni roots or propar values or eigen values® of the marix A The st
of sigenvalues of A is called the "spectrum of A",

il lis a characteristic root of the matrix A, then i la-u|
there exist a non-zero vector X such that (A - AN = 0or AX = X which is the eigen value probsam.

Characteristic Vectors: I & is a characteristic root of an n = nmatrix A than a non-zera vecior X such
that & ¥ = i) is called characieristic vaclor of glganvectorn of A corresponding to characteristic root L.

=0, then the matrix A— Al |s singular. Therefore

ILLUSTRATIVE EXAMPLES FROM GATE

4 =2
(.84 The eigen values of the malrx [_E 1]

(a) are1and4 (b} are-1and2
(c) areDand5 (d) cannol be determined
[CE, GATE-2004, 2 marks]
Sclution: (c)
Characteristic equation I8
4=1 =2
la=ail=| 5 4o3] = ©
(A=A x(1-M-[-2) x(-2)] = 0
-5k = 0
- ML-5) = 0
Hence, 1 = 0,5 are the sigen valuas.
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4
Q.85 The Elgen values of the matrix [P] = [2 _i] arg
{g) =Tands (b) =G and 5
() 3and4 id) 1and 2
[CE, GATE-2008_2 Markg)
Solution: (b)
4 5
Amls 5
Charactenstic equation of A is
4-3 5
5 wal=g
=  {4-M(-5-A)-2x5 =10
= AR+d-30 =0
A=5~B
Q.86 The smallest and largest Eigen values of the fallowing matrix are
d 2 2
4 -4 6
2 =35
{a) 1.5 and 2.5 (b} 0.5 and 25
{e) 1.0and 3.0 (d} 1.0 and 20
[CE, GATE-2015 : 2 Marks, Set-1)
Solution: (d)
For eigen values |[A- AT =D
3-2 -2 L
= 4d 4-) 6 (=0
2 =3 H=A
= (3-A)(-20 + 40 -5k + 2% £ 18) + 2 (20— 45~ 12)+2(-12+8+20)=0
= M-dde5h-2=0
Only 1 and 2 satisfy this equation.
A=1,1.2
Hence,Smallest eigen value = 1 and
Larges! eigen value = 2

Q.87 For the matrix [ : ;] the eigen value are

(@) 3and-3 (b) -3and-5
{c} 3and§ {d) Sand0
[ME, GATE-2003, 1 mark]
Solution: (c)

A i

—_1
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NOw, A=A =

Wheare : F

[4_1 ; I

1 4—1] B

(4-2) -1 =

o, (4-AF - (1F =

o, M=-L+1)(d4-k-1) =
o, (5-a)(3-2)

A

L1}

eigen value
0

LH

0

H

0

3.k=5

(b)

(d)

[ME. GATE-2005, 2 marks]

First solve for eigen values by solving characteristic equation [A- 1] =0

o
<@
@ |,
rn.
o
G.
{cl 0
-2
Sotution: (a)
[A=xi] =
T

puti =5in[A-Al% =0

-5 0 0 0
0 5-5 5 0
0 0 2-5 1
0 0 3 1=5

DUdlIllga by carmscdarninier

0
Q
1

=

(B=A)(5-M[(2-A){(1-1)-3] =D
(B=A{E-A2-30-1)=0

n

oo oo

= 3,9

3+ 13
2
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0
0
0
0

o o o O

0 0 0
4] 5 0
0 -3 1 X3
0 3 -4
- Sxy =0
3%+ %, =0
¥, =dyx, =0
Solving which we get x, = 0, x, = 0, x, and x, may be anything.
The eigen veclor coresponding to A = 5, may ba writtan as

Wy ks

. o k
N L :
! L “lo
x4 0

where k,, k; may be any real number, Since choice (a) is tha only matrix in this form with btk
%y 8nd ¥, = 0, 30 It is the cormecl answer,

Since, wa already gol a correc! sigen vector, there is no need o derive the BIgen vacior

corraspanding 1o A = Et:ﬁ
F

Q.88 The number of linearly indepandent eigenvectors of E tl is
&) G

(b) 1
(@) 2 {d) infinite ME, GATE-2007
Solution: (b) [ s
[
0 2
, [a-M] =0
=K 1
[ 0 2—1] =0
o (2-aP =0
= =2
MNow, conslder the eigen valus problam
[A-AX =0
[E— Ao W 0
G 2- }.. Hz 3 ]
0 1] % 0
put & = 2, we gat, [ﬂ D] L?-] = [D]
]{E = ‘D . |;|:|

0=
The solutlon is theratore ¥, =0, x, = anything

el = -]

(il

U
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1 1
.80 The eigenvectors of the matrix [G g] are written in the form [:l] and [h] Whatisa+b 7

la) O by 12
(ch 1 {d) 2 [ME, GATE-2008, 2 marks]
Solution: (b)
(1-a) 2 B
0 (2-2)
= (1= 2-A) = O
A=12
Mow since the eigen value problam iz
[A-M]%=0

o - [

putting the value of .= 1and ¥ = i,=[1]

- B

== a= 0 )

putting the value of & = 2and % = %, =H
[ ]

[ sl -

= -1+2b =0
and 0=20
1 i
2y gt B T
— b 5 (i)
From (i) and (i) a+b = i

2 2|,
Q.81 One of the aigen vectors of the malnx A=[ ] i

13
2
@l | _21] . o) H
(e l‘:} (d) {_‘1} [ME, GATE-2010, 2 marks]
Solution: (a)

W+

Characteristic equation of Ais

2.3 2
o Rt
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(2-A)(A-1)-2 = 0
M-Sh+d =0
A= 1.4
The eigen value prablem is [A-AlJ% =0
[;u;. 2 1=, o
_ 1 2][x, 0
Putting b= 1, 1 2]lx]| = |o
X, +dx%, =0 ao i)
B+ 2%, = oo )
Solution is x, = k, X, = -2k
- =2k
:':1 = e L&, 31 R:. = —E -
_ 2
Sinca, choice (A) [_1] I8 in sama ratio af Xy 10 %,
- Ghoice (a) iz an sigen vactor
42
0.92 The lowest sigenvalue of the 2 x 2 matrix {1 3] s
’ IME, GATE-2015 : 1 Mark, Set-3)
Solution: (2)

e[t

|A-2s| =0

4-% 2
[1 3_1]={-1-l}{3—1}-2=r_1

(A4} (A-3}2 = 0
}.'E - ?jn - 1.D = 'D
= Aafb 2
Miniumum value = 2
3 -2 2
.83 For the matrix A = |0 -2 1|, one of the Bigen values ig equal to
0 0 1
is an eigen veclor?
X =
(e} |2 (b) | 2
[ 1] ~1
4 5
{© |2 (a) |5
3

Qvalnicu vy \Jal | |seal ” IEI

-2. Which of tha follewing

[EE, GATE-2005. 2 marks]
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Solution: (d)

Since matrix is triangular, the eigen values are the diagonal elements themsalves namely
A=3,-2 and 1. Corresponding to eigen value, A = -2 let us find the sigen vector

3-i
0
0

.
21
0 1

A=Al %
2 4
1 |[%
- A%

i

o

0

o
0

Puiting A = -2 in above equation we gat,

5

0 0
Which gives tha equ

=2 2 A4
0 0 1 Kz

:3.?(3_

ations,

1}

SR -2+ 2Ry =

X3
i

o
0
o

Since eq. (i) and (i) are same we have

5x1-232+2;¢3= ]
HB=|:|

Putting

=

. Eigen vectors are of the form

"
"

0 D)
0 .. {ii)
0 .. {iii)
A0
.. iy

¥, = kK, ineq. (i) we get
511—2I{+2xﬂ =0

%y = 25k
EX [2/5k
%3] L0
Ky DM TNy = 28 k:k:0=256:1:0=2:5:0
-.:11- [2
*s | = | 5| is an sigan vector of mairix p.
Xg | _D

Q.94 The linear operation L{x) i defined by the cross product Lix) = b x ¥, where b=[0 10]" and
X = [, ¥, %,]" are three dimensional vectors. The 3 » 3 matrix M af this opeealon satisfies

Xy
L{x) = M} xz
L

(&) 0 +1,-1
(c) 1,1

Scanned by CamScanner

Then the eiganvalues of M ane

) 1,-1,1
i) 1,1, 0
[EE, GATE-2007, 2 marks]
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Solution: (d)
]
The cross productof b = [0 1 |:||]l and X = [X X2 %3] can be wrilten as
i j ki L :
bxX = [0 1 O|=x3i+0)-Xk
Xy Xp X3
=[x 0 =X
Xy
MNow Lix) = bxX=M|Xz
X3
where M is a 3 x 3 maltrix
G & O
Lat M= |Cs G Lg
Cr G GCg
X |
Mow M[%:| = bxX
X3
G Ca C3] [ [ X |
- Ci Cs G| |%2| =| 0
/ Cy Ca Gg| | %3] =Xy
By matching LHS and RHS we get
0 01 Xy ¥4
0 0 O||x]|=]|0
=1 0 0f |x3] =%
(0 O 1
oo, M=|0o 0o
=10 0
Now wa have to find the eigen values of M
IM-a1] =0
" JRIE
= 0 =& 0|=0
-1 0 =&
= “Hla-ﬂ}+1{ﬂ-l:] =0
= ek = 0
= ?U:J'-Ei-ﬂ:ﬂ
" .;l-‘ D,L:ﬂ
So, the eigen values of M are i, - and 0.
Correct choica is (d).
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11
Q.95 AneigenvectorofP= (0 2 g ie
003
@ -1 1 1] ) 1 2 17
ey [1 -1 2f ) [2 1 T
[EE, GATE-2010, 2 marks]
Solution: (b)
Given, P

([
e
== L B
L ke

Pis triangular. So eigen values are the diagonal elements themselves. Eigen values ara tharafore,
ywl ym 2 =3
MNow, the eigen value problemis [A-A]X =0

- 1 0 x, 0
0 2-% 2 ||x|=|0
0 0 3-A]{x 0

Putting &, = 1. w get the eigen vactor corresponding to this eigen value,
0 1 0O} 0
0 1 2|ix 0
00 2]|x 0

Which gives the equations
#y = 0
Ko+ 28y = 0

2, m
The solution is X, =0, Ky =0, X, = K

il

ke
S0, one elgen vector is X; = ’D] e, Xy M i Xy =k:0:0
0

Since, none of the eigan vectors given in choices matches with this, ratiowe need to proceed
iurther and find the other elgen vectors corresponding o the other Eigen values.
Mow, corresponding to A, = 2, wa get by substituting A = 2, in the aigan valua problem, the

tollowing set of aguations,
-1 1 0]|x% 0
0 g 2 HE = |0
0 0 1)|x ]

|

E Which gives the equations,
i _’{1'”"3 = 0
E:':3= ':I
X 0

32
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Solution is x; =0, %, =K %, = K

k
:::? = lh] .8, X, x?::f.s.:‘l:i:l[]
1]

Since none of the eigen veclors given in the choices iz of this ratio, we need 10 proceed Furthyeg
and find 3 eigan vactor also.
By putting % = 3 in the sigen valve problem, wa get

_E i lII] Hl| ':I'
':|' = E o = |0
0 0 O)]x ]

2%, + ¥4y = 0
Xy + 2%y = 0
putting x, = k, we gel, x, = 2kand x, = %,/2 = k
k
Xy = a] i, X, Xtk =120
K

1

DOiny the sigen vactar given in choice (b) [El I5 in this ratio. 50, the correct answer is choica (b)
1

0 -1
(.96 Une pair of eigen veclors comasponding to the two eigan values of the matrix l‘- ﬂ-‘ 5
1 i a1 =1
=13 o o (o) 1/l 0o
1] |0
{'::] ;I 4 1

1] (i
(d) Hm [IN, GATE-2013 : 2 marks)

Solution: (a, d)
Eigen values are
la<all =0
0 -1 I» 0
1 o] |o a]|=Y
A =1
1 -al =0
AMe1=0
E:-‘l
& A==
1o find eigen vecior,
ko= 4

W ___.-#
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1% -%, =0 and x,

-k =0

Erﬂﬂrl”L [:12] = [‘_;] and‘[!‘l]l S-E.T'E!:f'

- [

+|H?=ﬂ

] = (e} o

Thus, the wo aigen value of the given matrix are [ ]
=)

. N e B
Q.97 Given the matrix [ 4 E:I. thie eigenvector is

@ [
©) [i] (@) [2

Solution: (c)

First, find 1he eigen values of A

]
—_—
a4
3 ha

IaA-ul =0
-3 2|
a 4 :3_)] -
= (~4=A)(3-4)-8 = O
= E+a-20=0
- (A+5)(h-4) = O
s = -Gandi, =4

Lorresponding to A, = -5 we need 10 find eigen vecior
The eigen value problem is [A - M) ¥ =0

-k 2
G [ 4 3-3.]=U
Putting A = -5
1 2] 1% - 0
e gl [2] - ]
Ky + 2%y = 0
4H1+EHE=U'

Since (i} and (ii) are the same equation we take
Xy + 2y, = O

IHiwwuvalaiiivl

L]

o[
g

(EC, GATE-2005, 2 marks]

e i)
)

o ()

b}

—

e 1
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%, = =2,
% imgm 211
®q
_=|_E
=
%z

y i 1 2
Now from [he answers given, we look for any vector in this ratio and we find choice (c) [..1] i

e 2
in this ratio — = — = -2,

s =1
S choice (¢) is an eigen vector coresponding to A = -5,

Since we already got an answer, there ie no nead to find the second eigen vacior COMMesponding
oA =4,

101
Q.98 For the matrix [; E] the eigenvalue corresponding to the eigenvector |: ]

1g1| &
{a} 2 o) 4
(c) 6 id) 8
[EC, GATE-2008, 2 marks]
Solution: (c)
4 2 4 =N 2
”"[2 4]'[M'”l=[ 2 4-1]
. . i 101
Given eigen vec 101
M-M]% =0
4= 2 101
mE 2 a-alim| =©
= (4=-A)(101)+2%101 = O
— A=8
1 4 1 2
Q.99 The value of p such that the vector | 2 e an sigenvector of the matrix | P 2 1 |is
3 14 -4 10
[EC. GATE-2015 : 1 Mark, Set-1
Solution: ]
AX = WX
4 1 2101 [ 1
p 2 1}]2]1= alz2
14 <4 10f|3] |3
12 [ 1
p+7]| = |2
36 | |3
p+7

12 2 = o=17
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0.100 What are the eigenvalues of the foliowing 2 x 2 rratrix?

7 -
[-4 5
~1and 1 (b) 1and6
@ 2anc (d) aand—1  [CS, GATE-2008, 2 marks]

(c) 2and 5
Solution: (b}
2 =i
- [4 5]
The characteristic equation of this matrix is given Dy
la-ul] =0
ol Sesi (A
|2—'- 5-M 0
(2-A)5-A)-4 = 0
AM-7h+6 =0
A= 1,8

= The sigen values of A are 1 and 6.
Q.101 How many of the following maltrices have an eigenvalue 17

o 206 oll el 2

b} two
EZ; ﬂﬂ:;a (d) four [CS, GATE-2008, 2 marks]
Solution: (a)

10
Eigen values of [El u]

- O
[ D_,J . 0
(1-2)*-2 =10

A= Oork=1

0 1
Elgmvalmm[u D]

—_—
1
'=':|"
I L]
o
| —
1}
=

e
i
=)

L
Eigan values of L 1 ]

1= —1:|
[ 1 1-a) =0
(1-AF+1 =0
(1-4F = =1
1-% = ior=i

A=1=lor1+i

“Scadllneu py cdrinscdariner
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Eigen values of [ 1 —1] [ 1 .1]
(~1=A){-1-4} = O
“ +1.F = 0
A= -1 1
S0. only one matrix has an eigen value of 1 which is [1 D]
Correct cholca s (a). P
Q.102 Let A be the 2 x 2 matrix with elements a =3
= m .= 1 = -
sigenvalues of tha matrix A2 gre 5 . M ALY Pl e
{a) 1024 and- 1024 (B) 102442 and _1024,2
(€] 4J2 and _4./2

Scanned by CamScanner

(d) 51242 and 5122
C3, GATE-
Solution: {d) [ TE-2012, 1 Marks]

bon 1 ]

Elgen {A) are the rools of the characteristic polynomial given below:

-4 i
i - =0

(1-A[-1-L-1=0D
~(1-M{(1+A)-1 =0
M-2 =

A= 12

Eigen values of A are J2 and -2 respectively,

So sigen valuss of &% = () ang (-y2)"

= 2" and 2%
= 2% and 202

= 51242 and -512/2
0.103 The larger of the two eigemnvalues of the matrix [; ﬂ is

[CS, GATE-2015 : 1 Mark, Set-2]

Solution: (&)
A -3 =0
4=% &
|E 1_J={4-L}{1—1}-1n=u
W-5.-6=0
(A-6)(h+1) =0
— A= 6 -1

. Maximum eigen value is 6.
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e

1 2

0.104 Inthe gven matrix |0 1 0| oneol the eigenvalues is 1. The eigenveciors cormespanding
1 2 1

to the eigervalue 1 are

(8) jed2Nlev0oeR b) [af-420laz00eR
(¢} |aivZ 0lla20meR (@) lal—2 00 lax0aeR
[CS, GATE-2016 : 1 Mark, Set-3]
Solution: (b)
112
Let A=|0 1 0
1 2 1

Given sigen valug A = 1
Lex X be the vector. Than (A4 - AX =0

T=x =1 2
0 1-&4 0 |x =D
1 2 1=
put & = 1
0 =1 20 —xz + 219
00 Cm| =0 =|0 =0
i 2 0l ¥+ 23

putting x,:lr.wegaih:-rwzanug&.-w.q
.I

So the eigen vector = K| =1/2

=1/4

-1 =12
The ratios are X /Ip = ‘_'ﬁ="2 and /5 = 14 =2

Only cption (b) (4, 2, 1) has the same rafios and therefore Is a carrect igen vector.

Q.105 If the entries in sach column of a square matrix Madd up to 1. then an eigen value of Mis

(a) 4 i
c) 2 {d) 1
[CE, 2016 : 1 Mark, Set-1)
Solution: (d)
Conslder the '? = 2" squara matrx M=[; 2]
s A2 —(a+ d + (ad- be) =0 i)
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Putting & = 1, wa gel
1-{a+d)+ad-bec=0
1-a-d+ad-(1-df1-a@=0
1-a-d+ad-1+a8+d-a8d=0
0 = 0 which is true

<A =1 satighed the eq. (i) but A = 2, 3, 4 does not satisfy th '
ot 188y the eq. (1), For all passibig Yatlugg

Q.106 Consider a 3 = 3 matrix with every element being equal to 1. Its only non-zero agenvalyg |
&

[EE, 2016 : 1 Mark, Em_“
Solutlon:

- i
— s —b

Eigen value are 0,03

Q.107 The conditicn for which the algenvalues of the mairix 4 = [? 1] are positive, is
1 K ;

1
(&) "”‘5 b} k>-2
) k=0 id) k‘.-r.-l
e
[ME, 2016 : 1 Mark, Set-2]
Solution: (a)
_ -
All Eigen values of A = 1 k| 8re positive
2=10
. 2 = 2 leading minor must be greatar than zero
21
1 k| >0
Zhk=1 =0
2=
1
K = Fy

Q.108 Consider a 2 = 2 square matrix

o [ﬁ :]
[
where x is unknown, If the eigenvalues of the matrix Aare (g + fw) and (o - fw), then « s egqual '@
@ +jw (D) - jw
() +w {dl ~w

[EC. 2016 : 1 Mark, Set-3]
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A = a r
w o
Trace = sum of eigen values
20= 04 j+o0-jw
|Al = product of sigens

. o0 =10 = (o + jo)io - o) = o + of
which is possible anly when x = -

Solution: (d)

3

Q.108 Two eigenvalues of a 3 » 3 real matrix Pare (2 + —1) and 3. The determinant of Pis
[CS, 2016 : 1 Mark, Set-1]

Solution:
Two eigen values are 2 + i and 3 of a 3 x 3 matrix. The third eigen value must ba 2 - i
Mo na = | Al
= lal=(2+i)(2-1)x3=(4-%)x3

=5 %3 =15

1.8.2 SomeResults Regarding Characteristic Roots and Characteristic Vectors
1. % is a characteristic root of & malrix A iff thers exist 8 non-zero vector X such that AX = AX.
s If X is a characieristic vector of matrix A comesponding to charactanstic value A, then kX s also a
charactarisiic vector of A coresponding to the same characteristic value A where K is non-2ero vector.
3. It % is a characteristic vector of a matrix A, then X cannat comaspond o more han one characiernstic

values of A.
4 I amatrix A is of size n x n, and if it has n distinct eigen values, fhen there will be n lnearly

independent eigen vectors. However, if the n aigen values are not distinct, than thara may or may
not be n linearly independent eigen vactors,

& The characteristic roots (Eigen values) of a Harmitian malrix are real.

& The charactesistic roots (Eigen values) of a real syrmmatric matrix are all real, since every such

mairix is Hermitian
7 Characteristic roots (Eigen valuas) of a skew Hermitlan matrix are sither pure imaginary or Zero.

8. The characteristic roots (Eigen values) of a real skew symmelric matrix are either pure imaginary

ar zaro, for every such mairix is skew Hermitian,
0. The characteristic rools (Eigen values) of a unitary rmatrix are of unit modulus 1.e., p..i o
10. The characteristic roots (Eigen values) of an arthogonal matrix is also of unit modulus, since

evary such matrix is unitary.

1.8.3 Processof Finding the Eigenvalues and Eigenvectors of a Matrix
Let A= [a ], be a square rmalrix of order n, first we should write the characteristic equation of the
matrix A, i &.. the equation 14— Il = 0. This equation will ba of degree nin A. 30 it will have n rools.

These r roots will be the n eigenvalues of the matrix A.
It &, is an eigenvalue of A, the corraspanding gigervectors of A will be given by Ihe non-zero vectars

Ky = [0y Mg cemarmnenea: %) SEMISTYING the equations AX, = X, or [A-4,lJ%, =0

Qvalnicu vy valliouvaliici
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1.8.4 Propertiesof Eigen Values
g TR | I WO A, arathe aigenvallies aof A, then kk,, ki, ... kA are eigenvalues of ks
the eigenvalues of A~ are the reciprocals of the eiganvaluas ol A

1 1 1
L8 it Ay Ay yeees e, BTE TWO BIQEN vatus of A, thew -+~ areihesigen value ol &

3 HALA,, ..., Bre the eigen values of A, then :L': .}\-2-1 ii_: are the sigen values of A

i ki A e AL
I T G S A are the gigen values of a non-singuiar mairix A, iR, 5 are the

gigen values of Adj A.

Eigen values of A = Eigen values of Al

Maximum no. of distinct eigen values = size of A

Sum of eigen values = Trace of A = Sum of diagonal elemeants

Product of algen values = Al {i.e Al least one eigen vaue iz zera I A is singular).

In a triangular and diagonal matrix, eigen values are diagonal elements themsalvas.

Similar matrices have same eigen values. Two malrices A and B are sad 10 be similar if there
exists a non singular matrix P such that B = P-' AR

11, 1l Aand B are wo malrices of samea order then the matrix AB and BAwil have same characteristic roafs

- e o

5w

1

ILLUSTRATIVE EXAMPLES FROM GATE

Q.110 Consider the system of equations A, %, = Ay, where, L is a scalar. Let (A, %) be an
eigen-pair af an eigen value and its corresponding eigen vector for real matrix A. Let | be a
{n % n) unit matrix, Which cne of the foliowing statement is NOT correct?
(a) For a homogenaous n x n system of linear equalions. (A — Allx = 0 having a nonirivial
solution, tha rank of (A - A1) is less than n
(b) For matrix A™, m being a positive integer, (4™, ™) will be the eigen-pair for all |
(c) If AT = A", then |& | = 11oran
(d) If AT = A, then A is raal for all |
[CE, GATE-2005, 2 marks]
Solution: (b)
Although A™ will be the comesponding eigen vakies of A, x™ nead not be corresponding
aigen vaclors,

Q.111 For a given matrix

2 =2 3
A== =1 Gl.
1 20
one of tha eigenvalues is 3. The other Iwo eigenvalues are
(a) 2,-3 ) 3.-5
c} 2.5 {d) 3.5

[CE, GATE-20086, 2 marks]
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Solution: (b)
I, = Trace(A)
.'-';,+J-.?+13 = Trace (A)=2+(-1)+0=1
Now L =3
i :12 +hy = 1
=3 '.'1"'}"3. = 7
Only cholce (b) satisties this condition,
113
Q.112 The minimum and the maximum eigenvalues of thematrix [ 1 5 1| are-2ands, respectively,
311
What is the other eigan valua?
(a) 5 (b} 2
(e 1 {d -1
[CE. GATE-2007, 1 mark]
Solution: (b)
E": = -ﬁ'ﬂﬂﬂ{-ﬁ-]‘
hytdotdy = 145+1=7
Mo A, =-2. 4, =8
- -2+6+0, =7
Ay =3
Q.113 The sum of Eigen values of matrix, [M] is
215 B50 795
whara [M] = |655 150 B35
485 355 550
{a) 915 (b) 1355
(c) 1640 {d) 2180
[CE, GATE-2014 : 1 Mark, Set-1]
Solution : (a)

Sum of eigen vaiues = trace of malrix
=216+ 150 + 550 =015

2 1
Q.114 The two Eigan values of the matrix [1 p] have a ratio ol 3 - 1 for p = 2, What is another

value of p for which the Eigen values have the same ratio of 3 : 17

(a) -2 (b) 1
c) 72 (d) 143
[CE, GATE-2015 : 2 Marks, Set-11]
Solution: (d)
£ 1
A=y p
Let &, and A, be the sigan value of matrix A
. M8
LS S 3 forpe=2

Jvatiiicu lJy waliliouval i ici
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Sum of eigen value
=h+h,=24p
Product of sigan value A1)
= =2n-1
hidy=2p i
M_3
A, 1
- =3,
From eq, i),
= M +h,=24p
Q_'_: = E* r_'l
42
s =
From eq. (i)
=» g =2p-1
Pe2y?
= 3[-4_ = 2p -1
1
=% p= 2 —54-
]
2 1]
1 E
A=lk=D
[2—1 1
1 p-a|=0
(2-A)(p-R)-1=0
M-p+2+2p-1)=0
By putting values of p from options.
. . 14 : B
By putting option (d) 3 in above equations gives value 5, 3
. : 5
Henca ratio of two eigen valyes =5 - 3.
Sooption (d) is correct
12 3
Q.15 Tha sum of the eigen values of the matrix given belaw (1 5 1
3 11
(a) & by 7
(c) @ (d) 18
[ME, GATE-2004, 1 mark]
Solution: (b)

Sum of eigen values of given mairix = sum of diaganal slement of given matrix= 1+5+1=7.
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Q.116 Eigenvalues of a mairix 5,[3 2] arg 5 and 1. What are the eigenvaluas ol the matrix
2 3

5?= 557

(a) 1andz25 ib) Gand4

(c) 2and1 (d) 2and 10 [ME, GATE-2008, 2 marks]
Solution: (&)

1A, As by ... &, @re the eigen values of A, Then the sigen values of
Amare AT AT AT

Here, 5 mairix has eigen values 1 and 5.
So, 5% matrix has eigen values 17 & 57 i.e. 1 and 25.

Q.117 It a square matrix A is real and symmatric, then tha aigenvalues

(a) are always real {b) are ahlways real and positive
{c) are always real and non-nagative {d) occut incomplex conjugale pairs
[ME, GATE-2007, 1 mark]
Solution: (a)
The eigen values af any symmelric matrix is always real.
1 2 4
Q.118 Thematrix |3 0 6 |has one sigenvalue equal 1o 3. The sum of the other two sigenvalues is
i1p
(@) p {b) p-1
ey p-2 {d) p-3 [ME, GATE-2008, 1 mark]
Solution: {c) . :
Sum of the eigen values of matrix is = trace of matrix = sum of diagonal values prasant in the
matrix
1+0+p = 340, +4,
= p+1 =3+ +iy
= Ltiy, =p+1-3=p-2
Q.118 Eigervalues of a real symmetric marix are always
ja) positive (o) negative
(e) real {d) complex [ME, GATE-2011, 1 mark]
Solution: (¢)

Eigen values of symmelnic matrix are always real.

5 3 A : G
A= rmalized eigen vactors is given as
Q.120 Fﬂrlh&n‘rﬂl'llﬂ--[1 3].CNEmmnn gen

i b
|"-1 l

2
® |5 o |5
u? \ 2
¢ 3 e
(c) :PI'_I_'] (d) TEE [ME, GATE-2012, 2 marks]
=1
10 J5)
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Solution: (b)
5 3
il [1 3]

Characieristic aquation is

|Is-a 3
E 3—1\ =
(B-A{3-1)-3 =10
A-8k+12 = 0
A= 2.6
Mow, 1o find eigen vectors:
[A-Alx = C
Which is [5_'-"' M |l Y
1 3—35 | Xz | _I:I_
Put b = 2 in above equation and we get
[3 3] -:l':l-l = 0]
1 1) %) - |o
Which gives us the equation,
" 3%+ 3%, = 0
\ and X+ =0
¥, Which is only ane aguation,
:l:.l + :ll;P = 0]
Whosa soluticn s

:t'| - _h;
Xa K
500N igen vector is &, = [_k]

k

Which after normalization is = _%1_

1%
1
- lt)[ 2
(kP + 2y L k] 1

The olher aigen vector i =
vecior is oblained by pulting the ather aj
A = 6 in eigen valus problem il
[5— A3 x 0]
1 B A | X 0

Which gives,

[-'I 3 x, _ [
1 -3)|x:] o
Which givas the acjuation o

=X+ = 0

and X -3%, = 0

gcannea By Eamgcanner
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Which is only one eqguation
Xy + 3x,

=3
[

Choice (b) 1 ig the only correct chaice,
B

since i is & constant multiple of one the normalized vestors which is X,

Whose solution is

%2

‘Which after normalization is

?}H}Jﬂ:
-
]

Q.121 Thesigan valuas of a symmatric mafrix ara all
(g} complex with non-zero positive imaginary part
(b) cormplex with non-zero negative imaginary part
(c) real
(d) pureimagnary
[ME, GATE-2013, 1 Mark]
Solution: {c)
{ii The Eigen values of symmatric matrix [A" = A] are purely real
(i} The Eigen valua of skew-symmetric matrix [A" = -A] are aither purely imaginary or Zeros.

Q.122 Consider a3 x 3 real symmeiric matrix S such that two of its sigenvalues are a = 0, b » 0 with

Xy ¥
respective sigenvectors | 2 | | Y2 |. ifa = bthenxy, + £y, + xy, equals
x3] LY
(a) a (b} b
(c) ab (d} O
[ME, GATE-2014 : 1 Mark, Sei-3]
Solution : (d) _ . .
3 x 3 real symmetric matrix such that two of its eigen value area #0 b = 0 with respactive
H||h
igen vectors | %2 | [ ¥2| ifa = b then
x| LYa
x,¥, + XY, + X,¥, = 0 Decause they are orthogenal.
- =0 {sincea=h)
¥
| [%; % xa] |¥2| = O
¥3
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13
@) {ﬂ ) ‘f}
(c) {i} (d) m

0.123 One of the eigenvectors of matrix

[ME. GATE-2014 : 1 Mark, Sar.g)

Solution : (d)
The characlernstic equation 1A - all=0
_ ‘—E—A 2 \
- -4 E—:"n.- =0
o (A=B)(A+5)+18 = O
or AE-Bh+5A-30+18 = 0O
or .LE—:'L—12 =0
it 3 = 1141;113 " 112? —4.-3
Corresponding 1o A = 4, we have
3 -5-% P X
i Al [ TR Y
= 0
=8 2=
o 2 zlly]l =0

which gives only one independent equation, = 8x « 2y =0

X

§=% gives eigen vactor (2, 9)

-[5 Tl

which gives —x + y = 0 {only one independent eguation)

_ Y

1 which gives (1.1

Cormresponding to ), =-3,

k-

So, the elgen vectors are E} and m .

@.124 At least one eigenvalue of a singular matrix is
(8) positive (b) zero

(e} negative {d} Imaginary

[ME, GATE-2015 : 1 Mark, Set-3]
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Salution: (b)
For singuiar rmatrix

Al =0

According to proparties of eigen vakue
Product of sigen vaiues = |A| =0
= Alleast one of the eigen value is zerd.

0,125 The trace and determinant

nlaE::Emahuarehncmnlnb&—Eanﬂﬁﬁrasliv It

gigenvalies ang
{a) —30 and -5 {b) =37 and -1
{c) -Tand3 () 17.5and -2
[EE, GATE-2009, 1 mark]
Solution: (c)
Th=TraceiA)=-2 =k, + A= -2 L
ma = Al =-36 = &, 4, =-35 .. (i

Solving (i) and (i) we get b,

0.126 A malrlx has eigenvalues -
respectively. The matriz is

and A =5 -T. ; j
1 and -2. The corresponding eigen veclars are [_1] and [_ 1

1 2
w (s 4

g 1
{d) [—2 _3]
[EE, GATE-2013, 2 Marks]

1 1
o[ -
=1 0
] [c: _E]
Solution: (d)
AX = WX
2 o] - el
c d]|-1 -1
a-b = -1
c—-d =1
a b 1 1
2 o] - el
= a-2b = -2
c-2d = 4

Frarm equation (i) and (i), 8 = Qandb=1
From equalion (i} and (i), c=-2andd=-3

Ao [2 :H-ﬂz :3]

Q.127 A system matrix is given as follows,

0 1 -
Al6 =11 6
& 11 5

The absoluta value of the ratio of the maximum eigenvalua o the mirimum egenvalus is
[EE, GATE-2014 : 2 Marks, Set-1]

|
!
|
!
S
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Solution ;
Characteristic equationis |A-11| =0
-X 1 -1
6 -11-2 6 |=0
£ -11 56-i

) M55 + 11A—5) + A + 66] ~1[-30 + B +36] ~1[66- 66- 18] = 0
= M2+ Bh +11)-1(BL+6) + 6L =0

WeEhZ+11h+6
(h+ 1) (A+2)(A+3)
s

L 888

S3-BA-11a-B =10

Meximum eigen value -1 of A are [A]| =1,2.3.

Ratio of maximum and minimum egenvalueis=3:1=

0.128 The maximum value of 8" sunhthatmemauix{ 1 1

real sigenvecions is
2
@ 35
1+2J3

© “3F

lIlIl"'

Solution: (b)
Characteristic equation |A-=i.4r|=|:}
3= 0 -2

1 -1-4 0
0 B =2=}

{3+A}[(1+ 1) (2+2) -0]-2a-0)

248

2da

i
32+ 120+ 11

Scanned by CamScanner

1]
0
-1, -2, -3
3 _
7_3
-3 0 -2
0 | has three linsarly independsn;
0 a -2
1
® 35
1+ 43
(d) 33

[EE, GATE-2015 : 2 Marks, Set-1]

8]

A+ N +2) A+ =~(A+ 1) (A2 + 50 + 6)
2+ 82+ 110+ 8)

~3? + 120 +11) =0  (for @ maxima and minima)
0

—124 /144 —132 1
=24
5 3
1
-
V3

—[—E-!-:;E-'I' 1][—21- 13 +2][—2+ :;5-+3]
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& IE )

2 1

23 = ==
33

1
d =
33
Q.129 The eigenvalues and tha correspanding eigenvectors of a 2 x 2 malrix are given by
Eigenvalue Eiganvecior

|.I~..|=E v‘:[l}
1?=ﬁ VE=[1_I:|

The mafrix is

S bl 46
26 (k) g 4

(c) [E 4] (dl ["' ’3] [EC, GATE-2006, 2 marks]
4 2 8 4

Solution: (&)
By property of eigen values, sum of diagonal elements should be equal to sum of values of k.
So IAh=A+A, = B+4=12=Trace (A

t]nlzy in choice (a), Trace (A) = 12.

0.130 All1hainwenuia£nfﬁm2x2nmlrim==[S" “‘E]mnm:em.mumamnsaigamm
21
ts zaro. Which of the following statements is trua?
() PyiPag—Pyghay =1 (B) PyiPgp — PyaPyy = -1
(&) PP — P =0 (d} PyiPas + PizPyy = 0
LR [EC, GATE-2008, 1 mark]
Solution: (c)
Since, nx = [Al
and If ona of the eigen values is 2aro, then
P Paz
= 0
Now, lal i
= Pyy Pag—PyzPyy = 0

Which is choice (¢).

-1 3 5
0.131 The sigen values of the following matrix are (-3 =1 E]

| 00 3
5 fa) 3.3+ 5], 6-] (b) 6+5j,3+j3-]
o) 3+j3-j.5+] (d) 3,1+ 3, -1-3j

[EC, GATE-2009, 2 marks]

'
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Solution: (d) .
Sum of sigenvalues = TrlAj=-1+-1+3=1
S0 Ik =1
Only choice (d) (3, =1+ 3), -1-3jjgives L& = 1.
0.132 The aigenvaiues of a skew-symmetne malnx are .
[a] abwsys Zeto (B} ahways pure imaginary
{C) ®ither 2arc or pure iImagmary {d} always real

EC. GATE
Solution: (c)
Eigen values of a skew symmetric malfix ana elher Zero or pure Imaginary.

Q.133 The munimum egan value of the followang matr 15

3 & 2

5 12 7

2 7 5
fa) O (B) 1
icy 2 d) 3

[EC, GATE-2013, 1 Mark]
Solution: (a)
la-ul=0

3- 5 2
5 1#9-% T |=n
¥ 7 B-A

[3-1)[(12-3)(5-12) - 48] - 5[5(5- 1) - 14|+ 2[35- 212 - )] = O

(3-2)[80- 174 + A2 -49]-5(25-5h - 14) + 2(35 - 24+ 2)) = 0

B-M0P - 1T+ 1) =5{11-50) = 11 + 2A) =0
P -510+33-0 + 1TA2-11A-55+ 250+ 22 + 4% = D)
—l3+3]l?—3.'31. =0
AR-200F 433 = 0
AAI-200+33) = 0O
A= 0,182 182

L

S0 munimum eigen value is 0.

Q.134 A real (4 x4) matrix A satisfies the equation A? = /, where | is the (4 % 4) identity matrix. The
positve eigen value of A s ;

[EC, GATE-2014 : 1 Mark, Set-1]

Solution :
Since, 4 = |, eig(A%) = eig{h = 1
= aiglAF = 1
s eglA) = z1

Therefore, the positive eigen value of Ais +1,
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@.1356 The value of x for which all the eigen-values of the matrix given below are real is

10 5+f 4
x 20 B2
4 2 =10
(@) 5+ o) 5-J
(e} 1-5f {d 1+5/ [EC, GATE-2015: 1 Mark, Set-2]
Solution: (b)
For a malrix containing complex number, sigen values are real if and only if
A= A8 = [I]T
10 5+ 4
A=s|lx 20 2
4 2 =10
B 10 7 4
A= (A = 5.j 20 2
4 2 -0
By comparing these, x=58-]

0.136 Consider the following matrix.

)

If the eigenvalues of A are 4 and 8, then

{a) x=4,y=10 ib) x=5y=8

€} x=-3,y=29 (d) x=-4,y=10

[CS, GATE-2010. 2 marks]
Solution: (d)
Sum of eigen values = Trace (A)=2 +Y

Product of eigen values = |A| = Py —3x .
- 448 =24+ [lJ
4x8 = 2y-3x . i)
- 2+y = 12 ]
Zy-3x = 32 (i

- Salving (i) and (i) we getx = -4 and y = 10.
.137 Consider the matrix as given below:

1 24
D 4 7
D O3

Which one of the foliowing options provides the CORRECT values of the eigenvalues of the

matrix?
(a) 1,4, 3 (b) 3, 7.3
ic) 7.3.2 (d 1,2, 3
[CS, GATE-2011, 2 marks]

|
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Engy
Soiution: (a) I

Since the given matrix is upper riangular, its eigen values are the diagonal elements them,
EEI‘%

which are 1, 4 and 2.
Q.138 The value of the dot product of the sigenvectors coresponding o any pair of differer
values of a 4-by-4 symmetric positive definite matrix is 1 8igen

(CS, GATE 2014 - 1 e
Solution : L Sat""]

The valua of the dot product af the sigenvectors correspending to any pair of differ

values of a 4-bp-4 symmetric positive definite matrix is 0. o ®en
Q.138 The product of the non-zero eiganvalues of the matrix
1 000 1)
01 1 0
1110
01110
(1000 1]
is ;
Shg [CS, GATE-2014 : 2 Marks, Set-2]
1000 1 ‘x,'
A A Y B Xo
14190 X
1049974
Ak = Xk ] %
= X, + = =
1k Xy o= o, = Kot
= + X+ =
) k=0 TR Ay iy
sa3y, Xy = Is = 8
:g- = x:! Xy b
G 25 = ka .
e = 2
== -‘:3"' I_a_"" :-t = H:':E'
= 3b = kb
=1
k=3
i) k=o

= Eigen valua k = 0
s Thare are 3 distinct e

gen values: 0,23
Product of non

~ZBro &igen values: 2 x 3-g

Scanned By CamScanner



MADE EASY Linear Algebra | 87

0.140 Which one of the following statements is TRUE about every n x n malrix with only real
aigenvalues?
(@) |f the trace of the malrix is positive and the determinant of the matrix is negative, at least
one of its eigenvalues is nagative.
{b) If the frace of the mairix is positive, all its sigenvaluas are positive,
{c) If the determinant of the matrix is positive, all it eigervaluas are positive.
(d) K the product of the trace and determinant of the matrix is positive, all its eigenvalues are
positive.
[CS, GATE-2014 : 1 Mark, Set-3]

Solution : (a)
It gither the trace or determnant is positive, thers axist at least one positive eigen valusa.

Trace of the matrix is positive and the determinant of the matrix is negativa, this is pl.?rEEH:ItE u_nr:.r
when there is odd number of negative eigen vaiues, Hence at least one eigen value is negatve.

0.141 Consider the following 2 x 2 matrix A whare two elemants are unknown and are marked by a
and b. Tha eigenvalues of this matrix are -1 and 7. What are the values of a and b?

o, o

(&) a=6,b=4 {b) a=4,b=86
(0 a=3.b=5 {d a=5b=3
[CS, GATE-2015 : 2 Marks, Sei-1]
Solution: (d)
Trace = Sum of eigen values
1+a=8
- a=5
Determinant = Product of eigen values
(a - 4b) = -7
5-4b = —f
-4h = =12
= b=3
a=5b=3

0.142 Consider a linear lime invariart system x = Ax , with initial conditions x{0) at t = 0, Suppose a
and b are eigenvectors of (2 = 2) mairix A corresponding to distinct eigenvalues i, and i,
respectivaly. Then the response (1) of the system due lo initial condition +(0) = a is

(a) aet" (b) &'¥=p

o) efeg (d) g'fe 4gte®
[EE, 2018 : 2 Marks, Sat-2]
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Solution: (a)
v o= dx
Eigenvalues are A, and A,
We can write,
M 6
W=\
Response due lo initial conditions,
A f) = - +{0)
[ oA F
= ¢ 0 ][ﬂ.] = o et
o &[0

(.143 Let the eigenvalues of a 2 » 2 mairix A be 1, <2 with sigenvectors «, and 1, respeclively Thaq

the eigenvalues and eigenvectars of the malrix 4% — 34 + 4 would, respectively, be
(b) 2 14;x, + 1y x, — 12,

(a) 2, 14 x,. s
(&) 2 0% 2 (d) 2 0 x; +x, %, X,
[EE, 2018 : 2 Marke, Set.1)
Solution: (&)

Eigen values of A - 34 + 4l are
(10 =3(1) + 4 and (-2)* -3{~2) + 4
2.

14

Note: A2X = PX
= Xis eigan vector for A correspanding to eighan value 2

X, and X are e vof A corresponding to 1. -2
Then X, and X, are a.v of 4 -3 + 4/ cormesponding 1o 2, 14,

2 1

o
Q.144 The number of linearly independent sigenvectors of matrix A=|0 2 0|is
003

[ME, 2016 : 2 Marks, Set-3]

Solution:
2=-% 1 8]
Consider A-M=| 0 2-1 O
4] 0 3-i
Ch. equationis |A- =0

(2-A}2-ANB-A) =0
A=2 23

L=3 thereisone LI Eigen vector
A=2 Consider(4-2Nx=0

rank =2 The equation are s, = 0

Mo. ol variables = 3 x;=0

Let x, = k be independent. )
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k 1
Esgen vector is |0 | = &[0
0 0
Onky one independent Eigan vector inthe case ol A =2

Hence finally no. of L.I. Eigen veciors = 2
Q.145 Thea value of x for which tha matriy

3 2 4
A=19 7 13 }h&szamasanemenvalueis__.
£ 4 Dsx
[EC, 2016 : 1 Mark, Set-2]
Solution:
A has an eigen value 15 Zers
¥ |A| =0
3 2 4
g T 13 | =0 .
£ 4 -O+x

3(-63 + Tx + 52) - 2{-81+ By + 78) + 4(-36+ 42) =0
ATr—11)-2(c-3) + 4E) =0 |
My -33-18r+64+24=0

3r=-3=0
x=1
2 1 1
Q.148 Consider the matix A= 12 3 4 whose elgenvalues are 1, -1 and 3 Than Trace of
T
3 =
RS [IN, 2016 : 2 Marks]

Solution
Eigne vaiues of given matrix A are 1 -1, 3

Eigen values of A” are 1 =121
Eigen values of 3A° are 3 & &
Eigenvaluesof A® ~34% are -2, -4, 0
raceof A?-34 = —-2-4+ 0=-6

0Q.147 Suppose that the eigenvalues of matrix A are 1, 2 4, Tha determinant of (A7) s .
[CS, 2016 : 1 Mark, Set-2]

Solution:
Eigen(A) = 1,2, 4= |4 = 1x2x4 =8

=
Now, |(A7"Y| = |A ‘|=W=E=&1EE |
| |

“Scanned by Camacanner



90 | Engineering Mathematics for GATE and ESE Prelims MADE

— %ty

2. 4. The delerminant of (4 1)r

: ihat the eigenvalues of matrix A are 1. _
Q.148 Suppose bl S b b
ark '?"E‘l
-E]
Solution:
Eigan{d) = 1. 2.4 = |J‘H=1IEH4=E
=1 -1 o 1 __I "
Moy, ||[.l| IIrr=]lﬂ| |—T.!-B—D.1.E-5

1.8.5 The Cayley-Hamilton Theorem
This theorem is an interesting one that provides an alternativa method for finding the Nversg
|

matrix A. Also any positive integral power of A can be expressed. using thia theorem g fin
combination of those of lower degree. We give balow the statament of the thearem withoyt . u

Statement of the Theoram: Every square malrix satisfies its own characienstic equation
This means that, if ¢, A" +c, A™ "+ .+ &, , & + ¢, = 0is tha characleristic equation of 5 Squarg

matnx A of order n, then
CA" 4+ A+ 4c, A+c | =0 I
Note: when A is replaced by A in the characteristic equation, the constant term ¢, should be feﬂace:;:

by c, | to get the result of Cayley-Hamilton theorem, where | is the unit matrix of order n.
Alzo O m the RH.S. of {i) is a8 null matrix of arder n.

1.85.1 Finding Inverse off a Matrix by using Cayley-Hamilton Theorem
Example: Find A" by Cayley-Hamilton theorem, il

1 3
S
The characteristic equation of A is
la-a] =0
- 3
" J 4 E-J.J s
= (1-A{2-»)-12 =0
= A-34-10 = O
By Cayley-Hamillon theorem
AI_3A-101 =0
1
= | = 1—5[-‘!'-?—3#\]

Pra-multiplying by A~ we get

1(=2 3 "1 N
s 5 10
1'34—1‘] E i

5 10

3
a: " A= i
Exampi [ 4 EJ' BXpress A® as a linear palynomial in A
d!EmclErisTrcEquarimISE-—El— 10 = 0
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MADE EASY
byﬂayiey-Haminmlrmem,
Af-3A-10| = O
== A = 3A + 101

I A ks n % n matrix, any power of A can be written as a polynomial of maximum degree n -1,
Here, since A is 2 x 2, we can write any power of A as a polynomial of degree 1. i.e., a linear
polynomial of A, as shown below.

AZ = 3A+ 101 v A}

AY = dA7 & T0A . i)
substituting (i), again in (i), wa get

A3 = (3A + 101) + 104 = 19A + 301
Mo A' = 19 A% + 30 A o (11}
again we substituie equation (i) in equation (i} to get,

A% = 1O9{A + 101) + 30A =87 A + 1801

- )

Mow A® = BT A? 4+ 190 A

again substituling equaton (i) in equation (iv) we get,
AS = BT (34 + 101)+ 190 A = 451 A + 8701

Which is the desred rasull.
1.8.5.3 Expressing Any Matrix Polynomial in A of sizen x nasa Poly

n -1 in A by using Cayley-Hamilton Theorem
Exampla: Process 1o express a potynomial of a 2 x 2 Malrix as a linear polymomial in A

nomial of Degrea

3

1
Example: Let A = [_1 E] Express 245 _aa* + AZ— 4] as a linear polynarmaal in A,

Eiret of all write the characlerishic equation of A

Step 1:
In this casa.
| 3-A 1
lA -All = 4 2 —ll
= (3-A)(2-A)+ i
= M-8BL+7
Thus the charactenslic egqualon of Ais A=Al =0
ie, is A5,+7 =0 )
Step 2. By Cayley Hamilton thegram, matrix A satisfies the equation (i}, Therefore, putting A =1in
(i) we get
pA2-B6A+T7 =10
= A = SA-TI ()
Step 3: Find the A5 A4 A% with the help of {#). In this case
AY = BAE-TA
= At = BAZ-TA?
= At = SA%-TAS

245 - 3p% + A7 -4l = (64 - TAY) - 3A% + AT -4l
= TA*- 1dh3+A=—4l=?[5A3—T.ﬁ.2:|—14#.3+ﬁ.’—4l
- 2947 - 4BAZ _ 4] = Z1(5A - TA) - 4BA7 - 4|
57AZ - 14TA - 4 = 5T[SA - T1] - 147A -4l = 138A 403

= which s a linear polynomial in A.
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ILLUSTRATIVE EXAMPLES FROM GATE

Statement for Linked Answer Question 149 and 150.
Cayley-Hamilton Theorem states that a square matrix satisfies its own characteristic equation, Conig
Br

a matrix
=3 2
o2 [—1 ﬂ]
0.149 A satisfies the relation
fa) A+31+20=0 (B) AZ + 2A + 21 =0
&) (A+DN{A+2)=1 (d) exp (A)=0
[E'El EATE_EWT. E
Solution: (&) Marks)
-3 2
Wi [_1 n]
[A-All =0
-4 2
[ a0 =e
A=A =) +2 =0
AMiA+2 =0
A will satisfy this equation according to Cayley-Hamilten theorem
i@ A+ AA+21 =0

multiplying by A™' on both sides we get
ATARL3ATA L2477 = D
A+3l+247 = 0

Q.150 A% equals
(a) 511 A + 5101 (D) 309 A+ 1041
(c} 1544 + 1551 (d) exp (94)
R [EE. GATE-2007, 2 marks]
To calculate A%
stanfn:m.ﬁ?+&h+2l=nwhiuhhasbaendarimdabnua
= AZ = -3A-2]|
At = AZuAZ=(BA-21)|-3A-20)=0A%+ 12A+4|
= HAA-Z2)+12A4+41=-158-14|
A% = AR A% = (15 A-141)(-15 A= 14 1)
= 225 A% 4+ 420 A 4+ 156 | = 205 (-3 A-21)+ 420 A 1961
= -265 A-2541
AR = A AB
= A(-255 A - 254 ()

= 255 A?- 254 A
—255(-3A-21)-254 A
5114 + 5101

[}
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0.151 The charactenstc eaquation of a (3 = 3) matrix P is defined as
ali) = -Pl = WBelZ2 e +1=0
Ii | denotes identity matrix, then thea invarse of matrix P will be

(a) (P*+P+21) (b} (PZ+P +1)
) =(FE+P+1) {d] =(F2+P+21)
[EE, GATE-2008, 1 mark]
Solution: (d)

It characteristic equation is
Ber+20+1 =10
Then by cayley - hamilton theoram,
. P+Ple2P sl =0
| = -P3-pP2-2pP
Multiplying by P-' on both sides,
P'm P2-P-21=<P2+P+2l)

0.152 Given that
5 -3 10
- i .
A 2 D]Eﬂd [El 1]
the value &7 is
(@) 15A+121 (b) 19A + 30|
o) 1ITA+151 (d) 17 A+ 211
v [EC, EE, IN GATE-2012, 2 marks]
Solution: (b)
-5 =3 1 O
Characteristic equation of A is
e et -3
= 0
‘ 2 0-24
(=5 -A)(-A)+6 = O
=¥ 1.14-5.3--!-5 =0 .
So A2 + BA 4Bl = 0 {by Cayley Hamilton theoram)
= A? = —5A -6l
Multiphying by A on both sides, we have,
A3 = -BAF - BA
= AR = -5(-5A - Bl) - BA
= 194 + 30|

Q.153 A 3 x 3 matrix Pis such that, F* = P. Then the sigenvalues of Fare
(a) 1,1.-1 {b) 1, 0.5 + [0.866, 0.5 - D.666

! 088, - 0.5 - 0.B6BE (dy 0.1,-1
- de i & [EE, 2016 : 1 Mark, Set-2]
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Solution: (d)
Hamilton theorem,
By Calyey 3 = A
RO I

0.1564 A sequence Aqn]is specified as

i
anl 111 11 [1].@.-132.
= 1:1'3 ﬂar&r[ﬂle‘l 1] = 1, andfn] =Dforn < 0. The value ofx[12)is
The initial conditlions . ! [EC, 2016 . 2 Marks, Bﬁt_“

Solution:
11
= o
1=4 1]
aquation [ 1 =k =0
-A+M=-1=0
AB-A=1=0
By Cayley Hamilton Theorem
H-Al=0
Alm Awl

Ate AR+ 2A+1=A+1+2A+=3A+ 2]
M= 0 124+ 4/=0A+N+12A+4]1=21 A+ 13]

Az = A AR = 144A + BO [ = s
144 88

{129 [3:33 144]1
[~ [ Lo
x[12] = 233
1.8.6 Similar Matrices

Two matrices A and B are 3aid to be similar, If there exists a non-singular matrix P such thal
B=P'AF

1.8.6.1 Properties of Similar Matrices
1. Ais always similar to A,

Proof: Since A = I"'Al and | is elways non-singular, therefore A is similar o A,
2. It Ais similar to B then B is alzo similar to A,
Proof: If A is similar to B then B = P-AP (whera P is non-gingular)

Premultiplying above equation by P and postmultiplying by P-7, we get PBP-' = PP APP T=A
&, A =PEP

50 B is also similar 1o A

If A is similar to B and B is similar to C than A is similar to C. ;
Proof: A is similarto B = B = p-1ap ""‘.II
Bis similar 10 C = C = Q-'BO Al

%—C'aﬂﬂe(] Dy Camascanner



MADE EASY Linear Algebra | 95

Substituting aq. (i) and (i) we get
C=0'P'APQ
Now putting PQ = D, we get C = D'AD. which proves that A is similar to C.
4, Combining properties 1, 2 and 3 above we can say that the smilarity relation between matrices

is reflaxive. symmetric and transitive and hence an eguivalence relation.
5. Similar matrices have the same eigenvalues.

1.8.7 Diagonalisation ofa Matrix
Finding the a matrix O which is a diagonal matrix and which is similar to A is called diagonalisation.
i.e., we wish to find a non-singular matrix M such thal
A = MTDM
where D is & diagonal matrix.
Condition for a Matrix to be Diagonalisable:
1. A necessary and sufficient condition for a matrix A, . to be diagonalisable is that the matrix
must have n linearly independent eigen vectors.
2. Asufficient (but not necessary) condition for amatrix A 10 be diagonalisable is that the malrix
must have i linearly independent eigen valuas,
This is because it @ matrix has n linearly indepandent eigen values then it surely has n linearly
ndependsnl aigen veciors (although the converse of this is nol trua).
When A is diagonalisable A = M-'DM, where the matrix D is a diagonal matrix constructed using the
sigen values of A as its diagonal elemenis. Also the corresponding malrix M can be obtained by
construcling a n x n matrix whose columns are the eigen vectors of A.

Practical application of Diagonalisation:
One of the uses of diagonalisation is for ~umputing higher powers of 8 matrix efficiently.

I A =M"DMthen A" = M-'DPM | _
The above preperty makes it easy to compute higher powers of a mairix A, since computing D s
much more easy cormpared with computing A"

D000
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2.1.1 Definition _ g 3 oy,
A rumber A s said 1o be limit of a function f{x) at x = a iff for any arbitrarily choosen positive intege
e however small but not zero there exist a corresponding number & greater than zero such thg-
|1(x)— A | < e for al values of x for which 0 < | x - & | < & whare [x—a| means the absolute value o

(x - &) withowt any regard to sign.

2.1.2 Right and Left Hand Limits
I x approachas a from the right, that is, from larger value of x than a, the limit of t as defined before
is called the right hand fmit of {{x) and is wriltten as:
Lt fix} or fla+ 0)or . Ltlj{x}

—=igwD

Working rue for finding right hand limit is, put a + b for x in f(x) and make h approach zero.
In short, we have, fla+0) = Ll fla+h)

Simnilarly if » approaches a from laft, that is from amaller values of x than a, the limit of f is called the
lesft hand limil and ks wrian as:

LI f{x) or Ha-0yor Lt fix)
X—a-0 ¥ =il

In this case, we have, fla-0) = hLqu[a—h}
-4

If both right hand and left hand limit of |, as x — & exist and are equal in value, their common valué,
evidently, will be the limit of f as x — a. Il however, either or both of these limits do not exist, the Enl

of f as x — a doas nol exist. Even if both these limils axist but are not equal in value then also N8
limit of f as x — a doas not exist,

L. when Lt =
w—+at ) X —ITIH'I{H]
then ‘L'[ i) = Lt fx)= Lt f(x)
=i % =aat Kl

Limit of a function can be any real number, = or — =, || an sometimes beg = or —=, which a8 alst
allowed values for imit of a function
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2.1.3 Various Formulae
Thesa formulas are sometimes useful while laking limits.

(1 + %) 1+nx+"[“271:’u2+W”_E‘I"“E}xh...

(1=x"' = 1+1-:+:?+Ir"+

a* = 1+xmga+§{luua}2 +§{Fﬂﬂﬂ}3+.....

]

& w T+ At
BiNE = E=md—=—,,.

COBX = J=ogp o —

g1 +x%) = Xt . | X

log (1 -x) = -[I+E+3-+T+ .....
gy = X+—+—+....

tant e = X—— e —=....

38
=
ﬁﬂh.ﬁ: = I+_3"I_+§+”‘II

4
coshx = I+E+ﬁ+ .....

Remember; g i=0D.loge=Tloge=c; log D = ==
2.1.4 Some Useful Results

ging fanx 1
b e = 2 3goosx =1 3 =t A U e

5 u . 5 U A 7. U [1:8) =et

n.u]{"‘"m}: =g . ,_,_[T-'l':—’:) = g = !_."[ -I-;] =

2.1.5 Indeterminate Forms
A fraction whose numerator and denominaior both tend [0 Zero ag ¥ — a s an example of an
indeterminate form written as O/0. It has no definite values. Other indeterminate forms are:
aafna, oo — oo [ % se, 1% 00 o0,
(Indeterminate form are not any definite number and hence ane nat acceplable as fimits. To find timit
in such cases, we Use the Lhospital's nde)

woualditieu 5, eul I IE=AYI Y NINAY] |



98 | Engineering Mathematics for GATE and ESE Prelims MADE ifti‘r

g e
2.1.5.1 Indeterminate Form-I| [_U o — }

Use L'nospital's Rule

L'Hospital Rule: It [{x) and &} ko two functions of x and if,
Limix) = 0 and LM ox) =0

[ |

or if Lmip = = and Limex) ==
) _ o A
then .Ll.:] o "

provided. the latter kit exste, finile or infinite

Warking Rule: If the limit of f{x)/g{x} as x — a takes the form 00D, differentiate the numeralal and
denominaior separalely with respect 1o x and abtain & new function Fix)ie'ixg Now asx —a i
again takes the form 0/0, diferentiate the numeralos and denorminator again with respact 15 « and
repeal the above procese, until the ngeterminate form is removed and we gel either a real numer,
w= O = a= BG83 rmut

Caution: Before applying LHospital's rule at any stage, be sure that the lorm s O/0. Do not goan
4 apphying this rule, i the farm s not 0/0.

2.1.5.2 Indeterminate Form-ll (0 x =)
This form can be easily reduced 10 the form /0 or to the lorm /s, and then LHospitals rule may be

applied
Let Limit f{x} = Qand Limt a{x) = ==
L |

x=md X

Then we can wrila

L)

I B ]
lorm 01or Ut 5% frm =/

Lt (- o) = Lomkt 72

Thus Limit f{x) - ¢{x}is reduced toths form G0 o sfe which can now be evaluated by L Hospial rule

2.1.5.3 Indeterminate Form-ll (0% or 1= or =)

Suppose Lirnj: [Hx)]** takes any ane of thasa thrée forms.
-

Then lety = Limit [i{x)]»
k-3
Taking log on bolh sidaz we gel

gy

Limit o{x) - log f(x)

Mow in any of thase above cases Ing y takes he form O« w« which g changed to the form Q0 or e
(hen it can be evaluated by previous methods
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ILLUSTRATIVE EXAMPLES FROM GATE

Q1 The vatue of the funclion ffx) = fim —atX
. e function fx) = T 23 _7g7 8
fa) O 1
() =
1
{c) = [} oa
[CE, GATE-2004, 1 mark]
Solution: (B)
X3+ x?
el = zsffw]

O .
Since this has o lorm, limit can be found by repeated application of L Hospitals rule.

i) = |im[_3”:’?il = |in]|[ fa+2 ] ;[EHME ] SEEE

o= | Gr” — 14% 12% = 14 12x0-14 T
smlst
Q2 The Jm——is *
(@) 23 i) 1 |
c) a2 (d) ew [CE, GATE-2010, 1 mark]
Solution: (a)
2 2
Sing =X gin| —x
i —43 1 _ |im4[3 2 _omlELE .
= =+{l X I E' 5 :3 3 3
3
e X+ SNy
Q.3 IJL-[__T_] equal to
{a) —== o) O
{c) 1 {d) = [CE, GATE-2014 : 1 Mark, Sei-1]
Solution ; {g)
sins
i (:-r-ain.:] ; ‘H'__t_' _‘I+ﬂl_1
£ =S X 1 B 1 -
Sinca. lim 20X g
LR Lo
; =1
Q.4 The expréssion |ITII:| iz Bqual ta
it
(8} logx k) O
() xlogx (d) ==

[CE, GATE-2014 : 2 Marks, Set-2]
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Solutlon : (a)

fim o, [El-fnrm]
m=sl o L'!

Use L-Hospital Rule (Mote: Ditferentiate numerator and denominator w.rl a keeping x ag
constant. )

I3
- mlmx:lug:
a-+0 1

132
Q.5 li_nlth-;] iz equal to

(a) 2 b) &
(c) 1 (d) e [CE, GATE-2015 : 1 Mark, Set-11)
Solution: (d)
_ Ll
y= im(1+)
=5 logy = :I_T.Et'fug[‘l ‘ ;]

Which iz in the form of = x 0

To corvert this into E form, we rewrila as

21ug[1 + 1]
= gy = lim —-X%

H—p= 1]'_;
Nowar it | 1]
it is in 0 frm,
Using L'Hospital’s rule

-
1
T4 -
= logy = fim —X_ = im—2__5
-z L
x x
¥=e
sinfx
Q6 Hu © isequalto
a 0
:n: 1 ol
Solution: (a) (@ -1 [ME, GATE-2003, 1 mark]
sin’ x siny |
|-l }}D[T]xﬂxn:n
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2% -Tx+3 ; :
B — , then lim f{x) will be
ar. K1 Ext —12x -9 :I-aﬂ :I
@ =113 (b} 518
c) O (d) 2%
- [ME. GATE-2008, 2 marks]
Solution: (b)
252 _Tx+3 ]
:Hlf{ﬂ B iﬂl:-!ﬂ[ x? =12x-9
0
Here this s of the form of {E]
S0, applying Lee Hespital's rule
dx =7 5
Ha[m: -12] * 18
2
- E‘-[1+l’+:§]_
Q.8 l'_n'}]_ ’:3 =
(@) O ) 16
id) 1
@ " [ME, GATE-2007, 2 marks]
Solution: (b)
g' =1+ x+ f
2
. 3

1]
This is of the form of [E]

X :‘E
e —[1+ X+ — ]

. I‘I.I'ﬂ b,
Q.8 The Value of !!l'-Tﬂ_tH_—_E]'_

i ®
(a) T 12
L d =
() B 4

‘Scanned by CamScanner
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Solution: (b)

(x - B)

X

. [E+h]m -2
h

h {say)

= E+h

lir
P}

L1}
Above form in the (E]hy putting the value h = 0
Applying L' hospital rule

1 LS
58 nfs)
e 1 = it =
Q.10 Whatis fim 50 Loual o
ot e
o) 8 (b) <in
fc) O () 1
Solution: (d)
Ilmﬂ'!:-l
;‘ &0 B
o (1=cosx
an ."EE[T is
(@) 114
gr
Solution: (b)
jim U20085%) _ 1-cos0 0
e = o 0
S0 use L'hospitals rula
im0 |y 0% _0
S0 use Lhospitals rule again i e
= lim [-_._h““"‘] widl
a—hi & 2
Q.12 LmX=Sns
0 1-cosx
(@) 0
c) 3 &) 1
(d) not defined
Solution : (a) [ME, GATE-2014
Lt r—8nx
0 1-006x

oldlilieu vy cvdllodaliiel

[ME, GATE-2011, 1 mark]

[ME, GATE-2012, 1 mark]

21 Mark, Set-1]
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o —

Applying L Hospital s rule

d |
& 'Elt“ - 8ifa) {_'I " I':-'I""S-'_H
ad — o o ginx
[1-cnsx)
|"h'
0
LR il gl — term
(1t s 8t O i |
Again applying L Hospials rule
1
I; {1—00sx) Bin 1 0 .
L S i
- i ) ~1 CES A 1
dy ;
et -] .
Q.13 UT| iy | e equal o
@l o bl 05
ey 1 (dy 2
| [ME, GATE-2014 - 1 Mark, Sat-2]
Solution : (b)
i G [E] b
TP
appiving L Hospetal's rule,
2g* 21 1
Lt — B TV Rt
+—0 4GOS 4x "
1—cosl(x’)
Q.14 The value of Im %
it
(a) 0 (b) 3
() R (d} unefined
' [ME, GATE-2015: 1 Mark, Set-1]
Solution: (c)
: 1--1:}05{.1.2]
lirn 5
1=+ X

putting the x =0

We EIE form
o
Applying L' Hospital rule
iy B
o i Zysinis”)

0 R

Qvalnicu vy valiliouvalnici
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—
gin(x®)
= Jlml 4
B Elﬂ;:i]
=
1, sinfx®) 1 1
=20 =
' =&inL )
Q.16 The value of :ll'f:“b[———zsmﬂmsj] i
[ME. GATE-2015 : 1 Mark, Set-3]
Solution: (0)

im —Eifix lim =gind o E _
=0l 2einx+Cosx sl 2500 + Cos0 1
(Note: Since the funclion is not evaluating to 00 not need to use L'hospital's rule)

Q.16 im 209/2) .
B0 ]

() 0.5 L
() 2 {d) ot defined
i [EC. GATE-2007. 1 mark]
Solution: (a)
%”i”(g] | sne/z 1
o o 1 En .
#=0 “1 EalTu ale 2 =
2

£
Q.17 The value of Iﬂm [1+£:-] is
(8} 2

(B} 1.0
{5} a Ed} =
[EC, GATE-2014 : 1 Mark
Solution : () s
. 1Y i !
JE.“..[HE] =g zelne
¥ = SN
Q.18 WM S BQuals
(&) 1 B -1
g} = (d) - =
otuton (o [CS, GATE-2008, 1 mark)
— i I. i i |
ln X=80X L 1o singx am_(1-sinx/x) "J!,“_ﬂj 1-0
LTl o S £ b g e i [11“31}5”!} - 14 li Cis ¥ = 140 2.
K —u= =+ 1M P
e ¥

écannea By EamScanner
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R

. 1
Q.19 '|.I'ﬂ1a!ﬂlrhﬂ'.-ajuanfll1|_.nl[1—ﬁ] ?

(a) O [b) e?
(c) o'? (d) 1
[CS, GATE-2010, 1 mark]
Solution: (b)

e
Lim 1——] = L|r11 1—— [le 1——
= = n it o I o

|

Q.20 Imx"" is
(@) = by O
fc) 1 (d) Mot defined
[CS, GATE-2015 : 1 Mark, Sat-1]
Solution: (c)
= firm .il'“:
log y= lim logz""
log v = lim l"%
wyfea form, usa L' Hospital's rule
hog y = nﬂ”T’

log y=0 =y

Q21 iim SN2,

y—=d -4

[CS, 2016 : 1 Mark, Set-1]
Solution:
_ sin(z-4)

=d y—4

Let x— 4 = {not a5 x - 4

So the requires limitis im Ell“”=

Q.22 The value of ‘ll_.rn_{‘l+x2f_r is

(a} 0 (b} 12
(el 1 (d) =

[CS, GATE-2015 : 1 Mark, Set-3]

(L o L

b |
1.1

il

% e
Scanned y Camoscanner
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———tT
Solution: (g}
im(1+ 2
e

Ing y= ~|ir_r|._‘.|::gl:1+ U ."_"1% )
=fea form apply L Hospitals rule

]
20a {2}
= ko pm lim .
i =i o'
2x

= I = hm e
R = e

Again we are gefling -s/ form apply L Hosoital's rule

z
logy p= "I||:|_|-|:-1+ Y s
log y= E = [

-3 ¥=1
Q.23 lim 3= _

gead  po—uf e —

[CE, 2016 : 1 Mark, Set-1)

Solullon:

bm ginx = 4)

=4  y—4

Let k-4 = [nol 85 x =+ 4

m[r,'l

Sothe requires limif is [II'I1D

Q.24 1m [fi? + 0 —+/n? +1)is
[IM, 2016 : 1 Mark]
Solulion:
Li AP 4 =n® +1
ad
= |t "E"'” nlI”'[v.}F: +n+-u'n*|~'f]
n-"-“ +r.|+1.lrr‘l?+‘|}
ok o ama
"‘I‘"'wj'n?-'-n+~.'l <1
L — n—1

= | i | 1
nle=+ni1+—
| n g

¥ ¥
!
q[u.]
n 1 1
= T [ 1] 11 2
n[J‘I+—+ |‘I-I~-_.]
n Y
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iog, (1+ 4x)
0.25 L —5— lsequalto

1
g O ) T
(ch

L) b

(d) 1

[ME, 2016 : 1 Mark, Sat-3]
Solution: ()
{1+ dx)
Hn o 1 W0 form
1
DLl gy
n=all 3&3: a

n2e lim g +x-1-xis

(a) O {b) e
(@ 12 (d) -

[ME, 2016 : 2 Marks, Set-3]
Solution: (c)

LtV +x-1-x

{‘..|'I_n:E +x-1 —IJ[‘JI.'I:'E +x —'|+.::J‘

Lt ~
e 1'[.1'2+:—1+.T
1t Par=T-x

T =

,1:?+_r+l+.r

L x=1

LR 1

x,[1+ 5 F X
W

1
; [T
1
L — 3 = L =—
e L ;T 1 T+1 2
e
o

| 0.27 What i5 the velse of fim—21—7

O 1= £ !
:-:{II +¥

(@ 1 (b) -1
c) O {d} Limit does not exit

[CE, 2016 : 1 Mark, Set-I1]

oualiicu vy valliovaliici
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Salution: (d)

: - A U _labd
(i) -"—r*r:_t!+y2l!—r:1[ﬂ?+}" ]
ile., mﬂjtﬂﬂﬂdihmf—ﬂj

(&) Eﬂ_ﬁ: +y Ilm[fﬂ}] e

¥

{ie.. put ¥ = D and then x = 0]

At lim lim ;[m:.]
(iii) -v-ﬂr2+y' =40 % ¢ mix®

{ie., pwlf!mﬂ

firm ] e
vl VT 14 mF
which depends on m,

2.2 CONTINUITY

22.1 Definition
A function i(x) is dafined for ¥ = a is said 1o be continuous 8t x = a if:
) 1. f{a)i.e., the value of i(x) at x = a is a definite number and
2. the limit of the function f{x) as x — a exists and is equal to the value of f{x) at x = a
Nate: On comparing the definitions af limit and continuity we find that a function §x) is continuous =
x=ail
Limit f{x) = f{a)
¥
Thus f{x) is continuous at x = a if we have f{a + 0) = H{a - 0} = f(a). otherwise it is discontinuous &t
X = a.

2.2.2 Continuity from Leftand Continuity from Right
Let f be a function defined on an open interval | and let a be any point in |. We say that f is conlinuous
from the left ata, if Limdl  f(x) exists and is equal to f{a). Similarly f is said to be continuous from the

K=ad =0
right at a, if leitnl{:} exists and is equal 1o f(a).
X o=+
=~ A function f{x) is continuous at x = a, Iff it is continuous from left as well as continuous from right.

2.2.3 Continuityinan Open Interval
A function | is said to be continuous in open interval (a, b), itf it is continuous at each point of opan
erilenval.

2.2.4 ContinuityinaClosed Interval
Let f ba a function defined on the closed interval (a, b) f is said 1o be continuous on the closed
interval [a, b] iff it is:
1. continuous from thea right at a and
2. continuous from the left at b and
3. continuous on the open interval (a, b).

Scanned by CamScanner
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23 DIFFERENTIABILITY
Derivative al a point: Let-l denocte the open interval (a, b) in B and jet X; € |. Then a function
f:1 - FRissaid o be differantiable al x,, iff:

it [III:D + hr!, - f{ﬂu}l or Limil {f{:r:!l - |U‘~n]]
X—Xg

h=s Ws X,

exist (finitaly) and is denoted by F'{xg).

2.3.1 Progressiveand Regressive Derivatives
The progressive derivative of f (or right darivative of I} al X = x; 18 given by

g +h) = xg)
%ﬂt " ™ L h>0and Isdanntadt:yﬁl’{xu]urnyl’:xﬂ+u] or by F{%;*)

The regressive derivaiive of | (or left derivative of ) at x = Xg 5 given by

. flxg —h) =
Limit w h> 0 and is denoted by LE(x,) or by (%, - 0) or by Fgh

h—e

2.3.2 Differentiability in an Open Interval
A function f s said to be differertiable in an open interval (a, b). If it is differentiable at each poinl of

the open interval

2.3.3 Differentiability ina Closed Interval
A function | : [a, b] = R is said (o be differentiable in closed interval [, b] iff it is
1. differentiabla from nghtata [i.e. R {(a) exisls] and
9 gifferentiable from laft at b [i.e. L f{a) exists] and
9. differentiable in the opan interval (s, b).

23.4 Relationship between Differentiability and Continuity
Theorem: If a function = diffarentiable at any point, than it is necessarily continuous at that poent,
proof of this theorem follows fram definitions of differentiability and continuity.

Mote: The converse of this thaorem nat true,
i@ Confinulty is a necessary but not a sufficiant condition for the existence of & finite derivalive

(differartiability).
i . differentiability = continuity

Bul continuity 2 differentiability
ILLUSTRATIVE EXAMPLES FROM GATE

(.28 'What should be the valus aof & such that the function defined below is confinuous atx = 27

ACOBX 4y w2

| f{x) m E -X
| 1 iix=n2
(8} O (b) 2
{c) 1 d) w2 [CE, GATE-2011, 2 marks]

“Scdlllieu Dy calmnoacdaliiel
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Solution: (¢)
it i) b= corlitiuows al k = s
lTidq] }-L-r.l.;.ll = I[“ ] = 1 /
LE 2 !
)
J ¢
Sinee thae ik 15 oo faem a! b s can use Lheospitals ke on LHS o esguastion (1 s {0l
A SN K
lifmy - = ]
L )
= ] j,'_..r'— = 1
B F L}

=)

tlF
Q.29 Tre integrating lactor for dillarential equation 1 rE P =kl &
ot

tal e by & "
g (dp &' [CE, GATE-2014 ; 1 Mark, Set-2]
Solution : (d)

Q.30 The tunchon y = [ - 3x|
fal is continuous v ke R and differentiagie @ <= H
{8} = continuous 7 xe R and differentiabie ¥ 2 R Geacent at ¢ = 42
Gy 15 conbnuouws ¥ xe R and differentatiie v v R axcent af # = 209
10} i5 continuous ¥ se Haxcept « = 3 and differentiable v x= H

[ME, GATE-2010, 1 mark]

Solution: ()
y=l2-3|l =2-3x 2-3:20
= -2 2-F<0
Trerelore, ¥ =2 -y :-f.*_'.g
3
S
= A Z2 =
f - ' 3
SNCE & - 3x and 3« - 2 are polynomials thees are cantinucus a1 all poinis. The Ginly Sorarr
et = g
3
E !
Leftimital s s — 52-3 % i =0
a 3
o 2
Right kit atu = = i3 - =
3 ¥ 3 2=0
2
.
[3J = g ..'I-.-"'.?- =]
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Since. Left limit = Right limit = F[%]

o . 2
Fungction is continuous g 5 ;

y is therefore continuous ¥ x € R
MNow sinCe 2 - 3x and 3x - 2 are polynomials, they are differentabie,

; 2
only concern is at ¥ = 3

2
Mow, at = =

X LD = Left dervative = -3
HD = Right derivative = +3
LD = RO

L | B3

= The function y i not differentable at x =

. 2
50, we can say thal y is differentiable ¥ x e R, axcept at x = 3

.31 Consider the tunction f{x) = || in the interval -1 < x = 1, Al the point x = 0, i{x) i&

(&) continuous and differentiable (b} noncontinuous and differantianla
(o} continuous and non-differentiable (d} neither continueus nor differantiable
[ME, GATE-2012, 1 mark]
Solution: (c)
12! = x x =0
= ¥ ¥ = 0
at ¥ o= 0 left limit = 0
Right imit = -0=0
i) = O

Since left limit = Right limit = {0}

. .
| Sax|is continuous at x =0 |

Mo LD = Left dervatva (atx =)= -1
AD = Right derwative (atx = 0) = +1
LD« RD

rﬂb_}xils nol differentiable at x_:iﬂ

Sa |x| is continuous and non-differentiable a1 x = 0.

.32 I a function is continuous at a point,
(a) the limit of the funstion may not exist at the poinl,
(&) the functicn must be derivable at the point,
{c) the limit of the function at the point tends to infinity.
{d) the limit mus! exist at the point and the value of limil should be same as the value of the

function at that poinl.
[ME, GATE-2014 : 1 Mark, Set-3]

U My NI VLT
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Solution ; (d)
f{x) is continuous at any point
it LI i} =

r—=a

Lt _Hx)=f{a)

=T |

Q.33 Which one of the following functions is continuous at ¥ = 37

2, it x=3
k-1 it x=3 . 4, f x=3
(@ Hx)= e (b} fx) IE.-:{ if x=23
., I %xc3
3
@ o Jx*3 i xs3 ez iy
W Lt-rd i x>3 skl KE'ETIIfJ‘Ha
CE, GATE-2013
Solution: (a) E <1 Mag
2 r x=3
x=1 if x=3
o B9y vea
i 3
fm fx) _ g 223
" bol U
krm f = | =1 =
S et ug
Alsa, f3) = 2
lim fix) = lim f(x)=K3)
r w3 i
[ So itis continuous at x = 3

| option (a) is correct.

Q.34 Afunction fx) is continuous in the interva [0, 2]. It is known that A0} = f2) =-1and f1) = 1

Which one of the following statemenis miust be trua?

(a) There exists a yin the nterval (0, 1) such that ) = v+ 1)

(B} Forevery yin the interval 0.1 R =f2-y

{c] The maximum value of the function in the interval (D, 2) is 1

(d) Thers exists & yin the interval (0. 1) such that () = -2 -
[CS, GATE-2014 : 2 Marks, Set-1]

Salution : (a)

() Asye (0, 1); fly) varies from -1 1o 1 similarly iy + 1) varies from +1 to -1
- Let, 9lx) = fly) - f{y + 1): y & [0, 1
we get, 0lx) = 0 for some value of x
e fiy) = Hy + 1) for some y & (0, 1)

(b) fiy) = (2~ y)oniyaty = and y = 1

< In{0. 1) we cannat say fly) = (2 - ¥l

(¢)  We cannot conclude that the maximum value of f{y) is 1 in {0, 2)

gcanned by CamScanner
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(d) Asye (0 1) Hy)varies om -1 1o 1 and (2 - y) varies fram 1 o -1
o Let alx) =ty) + H2 -y} iy e (0. 1)
g(x) = O for same value of x
&, fly) = {2 -y} for some y & (0, 1) ; _
Bul the difference between y and 2 - y should be less than the length of the intarval 2 s nol
possible.

.35 Lat the function
sing COE 8 lang
sin(x/6) cos(r/6) tan(x/6)

fi@) = sin(x/3) cos(x/3) tan(x/3)

whara B & E %] and I'(8) danote the derivative of fwith respect to 8. Which of the following
statements isfare TRUE?

L
(Il Thera exists GE[E' E] such that F(8) = 0.

() There exists 8& [g' %] such that /(@) = 0.
(a) | only (o) 1l n_nla'
(c) Bothland Il (d) Meither | nor Il

[CS, GATE-2014 : 1 Mark, Sat-1]
Solution : (c)
l sinG cosé tan@
fig) = |sin(n/€) cos(z/6) tan{x/B)
sin(r/3) cos(x/3) tan(m/3)
fimE) = O
Sinca if we put 6 = 6 in above determinant it will evaluate to zero, since | and Il e will

become same.
w3 = 0 _
Since if we put 8 = 13 in above determinant it will evaluats to zero, since | and 1l row will

bacoma same
So fim6) = f{m/3). Also in the interval [=/6, =/3] the function f{8) is continuous and differantiable
{note thal the given interval doesn't contain any odd multiple of ©/2 where tan 8 is neither

continuous nor differentiabla). _
Since all the three conditions of Roll's theorem are satisfied the conclusion of Rolls theoram is
brise i,

30 e [% 'E] such that 7(8) = 0 s true

Mow the statemant

li: Lo E] hat Fi@) =0
HBE(E. : such 1 (B) =

Is also true, sinca the only way it can be talse is if F(8) = 0 for all values of 8, which is possible
only if f(8) is a constant which is unirue.
Therafore, both (1) and (II) are comect.
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Q.36 The function fx) = x gin x salisfies the lollowing equation: F(x) + fx) + Icosy =0, The valug

of Iis

[CS, GATE-2014 : 2 Markg)
Solution :
fz) = x sinx
flx) = x cosx + gine
{x) = (-x sinx + COSI} + COGX
Fix) + fx) + lcosx = 0
- T 8ifr + COGY + COSY + xSinx + foosyr = 0

=
= (24 floosx=0
= f+2=0
== [==2

Q.37 Lat fix) = x"¥ and A denote the area of tha region bounded by fx) and the X-axis, whan
varies from -1 to 1. Which of the following statements isfare Trua?
1. figcontinuousin[-1,1] 2, fisnotboundedm[-1,1] 3. Aisnonzeroand finite
fa} 2 only (B} 3 only
{c) 2 and 3 only (d) 1, 2and 3
[CS, GATE-2015 : 2 Marks, Sat-2]

Solution: (c)
1
Vx
Statement 1! f is continuous in [-1, 1]. Let us check this stalement.
We nsed o check continuity at x = 0

I[K:l =

: 1

lirm & = —oo

o = T

i Right limit = lim L _ im : = m 1 = 4w
o gx  rao+h - -0k

) ]
il = IlITI
Loft timit= . e

Left limit # Right limit

.. Statement 1 is false.

Statement 2: | is not bounded is [-1, 1]. Since at x = 01t goes |0 —= and +so the funcsion
is nol bounded.

~ Statement 2 is true.

Statemant 3: A s non zero and finite.

J' x 3y

[xzrat t | 2:3

+ j.l:'""'aﬂ':

S0 A is non zero and finite.
+ Statement 3 is true.

Q.38 Given the following staterments about a function f . F —+ A , seleci the right oplion:

B: If A} is continuous at x = xp, then it s differantial atx = x,.
Q: If fix) is continuous at x = xp, then it may not be differentiable al x = x;,
A: If Ax) is difierentiable at x = x;, then it s also continuous atx = x,.

s
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(@) Pistrue, Qs talse, Ris false (b) Pisfalse, Qistrue, His rue
(¢) Pislalse, Ois true, Ais false (d) Pis true, Qis lalse, Ais Irue
[EC, 2016 : 1 Mark, Set-1]

Solution: (b)
P 1 I Ax) is continuous ai x = x,, then it is also differentiable al x = x5
O« If fx) is continuous at x = x,. then it may or may not be derivable al x = x;
R : If fix) is differentiable at x = x;, then it is also continuous atx = x,

F iz false
2 is frua
Ris trua Option (b) is correct
).39 The values of » for which the function
x -3x-4
ey =  +3x-4
iz MOT continuous ara
{a)] 4and-1 (o) 4and 1
fc] —4and1 (d) -4 and -1
[ME, 20186 : 1 Mark, Set-2)
Solution: (c)
£ =3x-4
m —— i Nl CONtnNous
ftx) S 43x-4 :
when
e —d =10
{x+ dfx=1)=10
r=-41

2.4 MEANVALUE THEOREMS

2.4.1 Rolle'sTheorem

If & function i(x) is such that:
1. fix)is continuous in the closed interval a < x s b and

2. f[x) exists for every point in the open interval @ < x < b and
3. Ha)= Kb,
then there exists at least one valu

Note: Folle's thaorem will not hold good
1. i f(x) is discontinuous at sOme paint in the interval a < x < b

2. 11 '(x) does not exist at some paint in the interval 8 < X < b or
3. Ift{a) = H(b)

2.42 Geometrical Interpretation |
Let A, B be the paints on the curve y = fix) corresponding to the real num_bers a, b, respectively.
Since #(x) is continuous in [a, b], the curve y = f{x) has a langent at @ach point b&pvaan A and B. Also
as f(a) = I(b) the ordinates cf the points A and B are equali.e. MA = NB [See Figure (a)l

Eﬂfx.Ea:.fCM'lﬂ'aa{ﬂ-cbﬂumm-all’{E}-D.

|
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o

[ ]
b

i

m
{a} (o)
Then rolle’s thearam asserts that there is atleast ane point lying between A and B such that ihe
langent &t which is parallel to x-axis i.e. thare exists atleast one real number ¢ in (2, b) such thy
Fle} = 0. [se= figure (a) above)
Thera may exist more than one point betwean A and B, the tangents at which are parallel to x-axis
|&s shown in Figure (b)] i.e. thers exists more than cne real number ¢ in (&, b) such that Fic) = g
Rolle's theorem ensures the existence of ateast one real number © in (8. b) such that fic) =0
Ramarks:
1. FAolle's theorem fails even il one of the threa conditions is not satisfied by the function,
2 Tha converse of Folle's thaorem is not true, since, F(x) may be zera ai a point in (a, b) withoyt
salistying all the thres conditions of Rolle's thearem.

e S

(&

"_""\\ ILLUSTRATIVE EXAMPLES

Example: 1
- = Verify Rolles theoram for the following funclions:
@ fx)=2+x-6in[-3 2]
) fx) = (x=1){x=-2Fin[1, 2]
g () =C-1x-21in -1, 2]
Solution:
fa) Given fix)=x*+x-6 - (i)
() Asf{x) is a polynomial function, it is continuous in [- 3, 2.
(&) f{x) being a polynomial function is derivable in (- 3, 2)
i} f{~3) = (-3F-3-6=0,l{2) =2 + 2-6 = 0= f{— 3) = {2)
Thus, all the threa condilions of Rolle's thearemn are satisfied, therefore, there exisis atleast
one real number ¢ in (=3, 2) such that F(x) = 2x + 1.
Differantiating (i) w.rt. x, we gel F{x) = 2x + 1.

MNowfile)=0=2c+1=0=c= —%.

o thera exisis —% & (-3, 2} such that f"[—%] =10

Henca, Rolle’s theoram is varified
() Given f{x) = (x - 1) (x — 2% i)

(i Since fi(x) is a polynomial function, it is continucus is [1, 2].

(W) f{x) being a polynomial function is derivabla in (1, 2).

(il i1y ={1-1{1-2FP=0f2)={2-1) (2-2F =0=112) = (2}

Thus, all the three conditions of Roll's theorem are satisfied, thereiors, there exiats atleast

ona real number ¢ in (1, 2) such that F{c) = 0.

Differentiating {i) w.rl x, we gel

.
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Pix) = (x—1).2(x-2). 1+ {x-2F.1
= (x=2)[(2x -2 +x-2)
= (x=2)(3x-4)
Pca fic) = D
= le-2){(3c-4) = 0
= c = 243

But ¢ € (1, 2), therefore, ¢ = 4/3,
So, there exists (4/3)e (1, 2) such that F{4/3) =0
Hanca, Rolle's thearam e verified.
(c) Given [x) = (x* 1) (x =2}
{i) Since f{x) is & polynomial function, it is continuous in [-1, 2]
(il) fx) being a palynomial function is derivable in (-1, 2)
i) f=1) = (1 -1 {1-2)=0.12=(4-1)(2-2) =0=1H-1) = fi2)
Thus. all the three conditions of Rolle’s thearam are safisfied, tharafore, there exists atleast
one raal number ¢ In{-1, 2} such that Fic) = 0.

Differentiating (i) w.rt. x, we get
Fix) = (k' =1). 1+ (x-2)2x= Axd = gx -1,

Mow e} = Ome 3c?-dc-1=0

4+ [T6-43-1 247
= B 23 =73

E‘Ec?jﬂ.:g =t Eﬁﬂ and 2*—3"5- both lie in (-1, 2.
3 3

L, 2 4-JT
54:1tr'n!nnaJEau:tis'.tt'.n-nnensllm.l"ﬂtnenﬁ?--3£ and +3 in (-1, 2} such that

r,[___:.’—aﬁ] = Dand "[ E?ﬁ] =0

Hence, Rolle’s theoram is varified.

i)

Ablsn -1 <

Example: 2 | _ |
arify Rolle’s theomem fexr the following functions and find point (of points) whers the denvative vanishes:
4
f(x) = sin X+ COS XN ["}-E]
Solution:; |
Given: f{x) = sin X + COS X -

T
(a) f{x) Is continuous in [ﬂ- E]

T
() i(x) is derivable in | U 5 | and
fc) i0i=sin0+cos0=0+1= 1,
r
’[g]=ﬂn§ +J:[:R§ =1+0=1=2MH0)= r(i]
Thus, &l the three conditions of Aolles theorem are salisfied, therefore, there axists alleast one

real number & in [Dg] such that F{c) = 0.
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Diffarantiating (i) w.rl. X, we Qel

F(x) = cosx-sinx
Mow fle) = D==cosc-sinc=0=cCc=1
n b 8 3n I:I'E .
= G = EITI:i—l_T”“bu':E‘ IE_]—_:C_.4

- K " LA
S0 there axisis -E in [G'-E]S-U[:ﬂ [heat "[a] = 0.

x
Hance, Bolle's theorem is veriied and c = 2

Exampla: 3

Solution:

Discuss the applicability of Rolle’s thearam for the function f(x} = | x | in [-2, 2].
Givan: fix) = | xe [-2, 2] (i)
the graph of f(®) = |x|in[-2, 2]

Is shown in figura

1

2
(@) I{x) is continuous is [-2, 2]
{b) Differentiating (1) w.r.t. x, we get

Fix) = ﬁ,xﬂﬂ

= the derivative of f{x) does not exisl at x = 0

= f{x) i& not derivable in (- 2, 2)

Thus, the condition (§) of Rolle's theorem is not satisfied, therefore, Rolle's theorem is nol
applicable 1o the function Hx) = x| in [-2, 2].

Moreover, f{- 2) = | -2 | = 2 and f(2) = |2| = 2 = [-2) = §(2), 50 the condition (i) of Rolle’s
theorem is satisfied.

Further, itis clear from the graph that there is nat point of the cure v = | x | (-2, 2) at which ihe
tangent is parallel to x-axis,

243 Lagrange's MeanValue Theorem
It & function (x) is:
. Continuous in closed interval & < % < b and
2. Differentiable in open interval (8. b) ie, a<x < b,
then there exist at least ona value ¢ of x lying in the open interval a < x < b such that

fle) = 0L=1@)

\,
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2.44 Geometrical Interpretation

Let A B be the paints on the curve y = i(x) correspanding to the real numbers a. b respectively,
Since fix) is continuous in [a, b], the graph of the curve y = f(x) is continucus from A to B. Again, as
f{x) is derivable in (a. b) the curve y = f{x) haz a tangent at each point between A and B. Also as

a # b, the slopa of the chord AB exists and the siope of the chard AB = fib) - f{a)
b-a
?’il. |‘|J

=
;-u
B
_»
?;_-u
=

it

I.-_-_-

(]

- B E LT LR L

-'D [ X] [ ] "X

1] 1]
Then Lagrange’s Mean Value Theorsm asserts that there is atleast one point lying between A and B
such that the tangent at which iz parallel to the chord AB. There may exist more than one point between
A and B the tangents al which are parallel 1o the chord AB [as shown in Figure (b)]. Lagrange’s mean

value theorem ensuras the existence of atkeast one real numbaer ¢ in {a, b such that Flc) = ﬁ:t'r:]:— ;I:ﬂ]'

Remarks:

1. Lagrange's mean value theorem fails for the lunction which doas not satisfy even one of the two
canditions.

2. The converse of Lagrange's mean value thearerm may not be true, for, #{c) may be equal io —f{*’h] —{ia)
-

at a point ¢ in (&, b) without satisfying both the conditions of Lagrange's mean value theorem.

ILLUSTRATIVE EXAMPLES

Exampia: 1
Verily Lagrange's maan mean value theoram for the following functicns in the given interval and
find "c' of this theoram.
{a) f(x)=x*+ 2%+ 3in[4, 6]
(b) fix) =px®+ gu+r,p=0, In[a b]
Solution:
{a) Givenfix)=x+ 2+ 8
| (i) fix) being a pohynomial function is continuous in [4. 6]. )
i (ii} T{x) being & polynomial function is derivable in {4, 8).
Thus, both the conditions of Lagrange's mean value theorerm are satisfied, therefore, thare
axisis alleast ane real number ¢ in (4, 6) such that

flE)—14)
fe) = 52~
fE) = 62+ 2B8+3=5,4)=424+24+3=27.
Diterentiating (i) w.r.t. x, wa get

Fix) = 2x+ 2=flc)=2c + 2

gcannea 5y CamScanner




120 | Engineering Mathematics for GATE and ESE Prelims MADE EAsy
—

f{6} -4 51-27
Fe) = :—E}'_F EE+2-TﬂED+E-1E

= 2 =2 0=0= 5
. &) — 14
Thus, there exists ¢ = 5 in (4, 6) such that F{3) = —2—5—
Hance, Lagrange's mean valug theorem is verified and ¢ = 5,
b} Givenfix) =pxf + gu+rpz0
(i} f baing a polynomial function is continuous in [a, b]
(i} { being a potynomial function is derivable in (8, b). _
Thus, both the conditions of Lagrange's mean value thaorem are satisfied, theradore, the; a

fil) - fla)
exists atieast one real number ¢ in (a, b) such that Fix) = ————.

fib) = pbf +gb +rfla)=pa +ga +r
Diffeentiating (1) w.rl, x, weé gel
Fix) = 2px + g =1{c) =2pc +q.

f(B) - f{a)
) i Sy
' (pb? +qb+1) -(pa’ +ga+r)
= 2pe+q = b-a
; " =
=+ 2pc+q = I:mzJrEIl::i‘;;:'{ﬂ 2
= 2pt = pla+ b)
a+b a+b
= C= > and > e ta, b)
Thiis, there exisl ¢ = % in {a, b) such thal c) = w-
Hence Lagrange's mean value thasram is verfied andc = E—-;—t-'-
Example: 2
Find a point an the graph of y = x? whera the langent is parallel to the chord joining (1, 1)and
{3.27.
Solution:

fix) = »x*intheinterval [1, 3]
(@) fix) being & polynomial s continuous in [1, 3]
b} f{x) baing a polynomial is derivable in (1, 3).
Thus, both the conditions of Lagrange's mean value thaorem are satisfied by the function fix)
in [1, 3], therefore, thare axists atleast one real number ¢ in (1, 3) such that
_ K31
fle) = Ao
fi3) = 3 =27and 1) = 1¥=1.
Differentiating (1) w.rL x, wa get
fix) = 3x? = o) = 3c2.
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il fic) = ﬂ:g_::ﬂ = 3% = 23?_'11 =37 =13
- P
ot 35{1.3]'#:‘_:-""—?;
When X = "—rg-%.lrmn;y:..“’;ﬁi
V38 13,39

Hence, there axists a point
paraliel to the chord joining the paints (1, 1) and (3, 27).

T3 ' g |onthe given curve y = x? where the tangent is

Exampla: 3
Does the Lagrange’s mean value theorem apply to f{x) = '3, -1 <x < 17 Wha! conclusions can
be drawn?

Solution:
Given, fix) = x'% xe [-1,1] o (1)

(a) (x)is continuous in [~ 1, 1]
(b) Differentiating (1) w.r.L. x, we get

1 1 y
Fix) = 53.“'-5'” = Exzrﬂlx 20 vor ()

=+ The derivative of f(x) does not existatx =0

= f{x) is not darivable in {-1, 1).
Thus, the condition (i) of lagrange's mean value theorern is not satisfied by the function fix) = i

in [-1, 1] and hence Lagranga’s mean value theorem is not applicable 1o the given function
f(x) = x"¥in [- 1, 1) and hance Lagrange's mean value theorem is not applicable to the given

function fix) = x"in [-1. 1],

1
Conclusion. However, fram (2), Fle) = F—;G =0
Alsofi-1)=(-1)"=-1,f1)= 13 = 1 {we have taken only real values)

—lg-1
flc) = f{:j-i-ﬂ]
1 1= 2y
= ac® -1 2
1 1 " 1
= o = §=P-G2l'ﬁ=ﬂ im-

1
Thus, we find that there exist twa real numbers ¢ = %7 in (-1, 1) such that Flc) = 3 7 4™
If follows that the converse of Lagrange's mean value theorem may not be true.
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ILLUSTRATIVE EXAMPLES FROM GATE

Q.40 A rall engine accelerates from its stationary position for 8 seconds and ravels a dislang,, &
: o80 . According 1o the Mean Value Theorem. tha speedometer al a certain tima Curing
acceleration must read exaclly

(b} 8kmph
la) Q
" (d) 126 kmph
[c) 7Skmp [CE, GATE-2005, 2 marks;
Solution: (d) - ion.
Since the position of rail engine S(t) is continuous and differentiable funclion, according iy
Lagranges maan vahue thecrem
=t where 0 < 1 = 8 such that
S(8) - §(0) (280 -0)
= i - m/sec
S = v (t) B-0 {8 - 0)
280 280
- ..E_r-ml'gg.: = ? o 1000 kmph = 126 kmph

whera vil) is the velocity of the rail engine.

Q.41 A function fx) = 1 - x* + ¥ Iz defined in the closad interval [-1, 1), The value of x in the
open intarval (=1, 1) for which the mean value theorem is satisfied, is
la) 112 (b) —1/3
{c} W3 (d) 12 [EC, GATE-2016E : 1 Mark, Set-1]
Solution: (b)

Since f{1) » £-1), Roll's mean valuee thesrem does not apaly.
By Lagrange mean value theorem

o fl-f-0_2
x) o0 _2_1
-2x + Ix? =1

7

1
Ewml ——
3

shesin(=1,1} = L

I= ——

3
245 Smmplimlnnmfug-umg-'sm“nvnluethmmm
1. I a function f(x) ie
(a) continuous in [a, b]
(b} derivable in (a, o) and
() F{x) > 0lorall xin(a o), then

Proof, Let x,, x, be any two member
: 5 of [a, b] such that ” "
the conditions of Lagrange's mean valy ] AL x <%, 2 b then {[x) satizhed bot?

: & thearem in [x
real numiber cin (%, %5} such that b %2l theredare. there exists ateast an2

Hx) is strictly increasing function in [a, b].

Py = 1)~ 1y

Xa— Xy
= e -%) Fle) = 1) = fix )
Eh,ul'{x]:-ﬂlcnrnllxhéa b) = ) = 0 for ici
i I
@ it ohd Al cin (k. x5). Also x, < x, ile Xy =¥y >0
=3 ) -f{x) = 0
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= f(x,) > f(x,), for all »,, %5 such that a < x

Hence, f(x}is sirictly increasing in [a, b] e

If a function f(x) is

{a) continuous in [a, b]

{p) derivablein(a, b)

{c) ¥{x) < 0forall xin (a, b), then i(x) is striclly decreasi i

(F the PR e it b y decreasing function in [a, b].

Some Important Deductions from Mean Value Theorems

If & function fix) be such that (x) is zero throughout the interval, then fix) must be constant

throughout the interval.

I i{x) and ¢(x) be two functions such that #(x) = ¢'(x) throughout the Interval (&, b). then f{x} and

$(x) differ only by & constant.

If F(x) Is:

{a) centinuous in closed interval [a, b]

(b) differentiable in open interval (a, b)

{c) Pix)izs-veina <x< b, then f{x) iz monotonically decreasing function in the closed interval
[a, b] and ¥(x) is positive in a < x < b, then f{x) is monotanically increasing funchon in the
closed interval [a, B].

2.4.7 Some Standard Results on Continuity and Differentiability of Commonly

used Functions
it is important to rememiber the following facts regarding cormmon functions while checking applicablity
of Rolle’s and Lagrange's mean value theorems:

T

2.
3.

el B

Constant function is differantiable everywhare [F(x) = 0, ¥x].
Any polynomial function is continuous and differentiable everywhers,
The exponential function (8%, a* atc). sin x, as well a5 COS x are also continuous and differentiable

avenywhere,
log function,
domains.
tan x is discontinuous at x = = w2, 238z, ..

¥l iz continuous but not dilferentiable at x = 0.

If F{x) — = as x — k, then that function is not dillerentiable al x = k.

Sum, difference, product, quotient and compositions of continuous and differentiable functions

are continuous and differentiable.

trigonometric and inverse trigonometric functions are differentiable within their

2.5 COMPUTING THE DERIVATIVE

Rules of Differentiation:

(t+g)f =F+0 (Sum rula)
ff-gf =F-¢ {Difterence rule)
(Lg)’ = fg' + g (Product rule)
[,;_] . E'—*'g‘?fi' (Guotient rule)

df dg

1 £ --ag
d—;{r{m:}}: = dg o {Chain rule)

Using the above five rules, we can differentiate masl of the cases where y is an explicit function of x.

The foliowing is the table of derlvatives of commenty cccuring funchions:
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fix) i) fi{x) Pl
X nx" ! cosh x sin b x
] sin! % ]
Inx = Jv_-l—_ =
t -
log, x log, E'[I] st & ==
J1=x?
g" a” 1 1
a" a* log,a lan % e
8in X cOS X 1 :
COS X -5in X cosag ' X | ==
tan x sac? ¥ :ll:-|||:l-iiEI =
1
SEC X SEC X 1an x sac' X =
cosec x | —cosec x col x Xy Jx? - 1
cot x —cosec’ x cot % 1 1 -
sinh x coshx + X
¢l = (x=0)

xl
Most explicit funclions can be differentialed by using above table along with the five rules af

differenfiation. For more complicates cases, we have to resort to more advanced methods of
diffsrentiation as given babow:

1. Cifferantiation by substitution
2. Implicit differentiation

4 Logarithmic diferentiation
4. Parametric differentiation

2.5.1 Differentiation by Substitution

There ane no hard and fast rules for making suitable substitutions. It is the experience which guides
us for the selaction of a proper substitution, Howeves, some usaful suggestions are given below:
I thia function containg an axpraasion of the form

1. = putx=asintorx=acost
2 B+ pulx=atantorx=acoll
3. »-af pul:-c:ila-ﬁntﬂ'n-amt

"i ‘Ii’a — +Putx=acos!

8. a:::-nﬂ:-tthﬂmx.putﬂ:rma&mdb:rslnﬂ,r:-n_
ILLUSTRATIVE EXAMPLES

Exampla:

Ditterentiate the following functions (by sultable substitutions) w.r1, x.
L5 [ 2+ ] B RALESEA
H. sin! | 7% (o) tan "
X=x"

fe) cos' | LT (e} tan" {».."IH\'.E +:r|:]
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Solution:
i 2K -
(&) Let y = S0 [1Hg).pu.a:=tmal.a.a=ran‘x.
2 lan@ . .
= s’ = gin-" (sin (28)) = 20
= d [l+|anzﬂ]
= 2tan x, differentiating w.rt x. we get
dy o 2
dx e xt 1462
r
= = —1*"2—” ulx=tan@ie 8=tan"'x
(b} Let y = tan = ].p
m,1'J1+unﬂn+1
fhen Y = tand
—1 1
gach+1 -1 msﬂ+
- (2520 = | G
| cos8
2cos? ©
" m.1[1+nn-sﬂ] - tan! 5 EE
= sing 8.0
,ES'HEBWE
[ eot?)] < tan™ mn[_rg_g]]
= tan 'E"EIE i= 5 3
= E—E=£—ltﬂn"x.diﬁarﬂnmﬂngw.r.t. ¥, we gel
gy g 2
dy G ST
S T T
1
A By =1
- X=X - ~1 . GD5_1[ ]
(c) Let y = CO8 {:“:,H“]"':":"@Ei ot Z 1
X
put % = tan @ie B =tan" x,
Sfanfe-1) —1—mn’a]
then y = 0% | arfest) 1+ tar® @
= gog' (- cos 28) = cos'(cos (x - 28))
= m-26=n-2tan! x differentiating w.rl, x, we gel
dy ¥ s 2
dx D'E'Hf 1412
(d) Let y = tan“[:d1+:-:*'+x]

AL TV ”] ALTLINUALTILTV]
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colBie 0= cot'x

then = Ian"|{1.l'1+4:t:=-1"’ﬂ+-=:¢lﬂ}l

tan' (cosec 8 + cot 8)

t.BI'I_1 [_1 i CosA ]
ginB smé

g

i

IEIH_I[1+EHEB] = 2'3'3522
sing ) = 10| - 88 =Tﬁ“"(cnr§]

2

. f
2
sin , Cos,,

e (of3-8) 5

o 1 ¥ ;
= 5= Egm . differentiating w.r.t, x. we get

ay =D—1{— 1 ]_ 1
o 2l 1+x2) 201+ %7)

2.5.2 Implicit Differentiation

Ity be a lunction of x defined by an equation such as
Y= Tt -5+ 112+ By g i)
¥ Is said 10 be defined explicitly in terms of x and we wrile y = f{x) where
fix) = 7' - 567 + 1152 + Dy _1q

However, if x and y are connectad by an eguation of the form
| - Sty . Ty B 40 = (i)
Le. fix, y) = 0, then y cannot be axpressed axphcitly in terms of x. But, &til the value of y :Ieu;aﬁda
upon 1nal._|::|f x and there may exis! one or more functions cannecting y with x 5o as to satisly
equation (i) of there may not exist any of the functions salistying equation (i),
For example, consider the equations

Ry 25 = 0 .- {18}
anc - Faey 425 =0 ... (v}
In equation (i), y may be expressad Bxphcitly in terms of x, but y is not a function of x. Hare we have
two functions of x {or two functions of y il y were considered (o be Independeant variable) f, and i,

dafined by f.{x) = Va5 - w? and le:'x] = —‘|||I25— =2 which salisly equation i),

In equation (iv), there are na real values of x that can satisiy it

Incases (i), (iif) and (iv), we say thal y is an implicit function of x [or x is an implicit function of y) and
inall such cases, we find the derivative of y with regard 10  {or the derivalive of x with regard 1o y)
Dy the process called implication differentiation, O course, wherever we differentiate implicitly an
equation that defines one variable as an implicit function of another variable, we shall assume thal
the function is differentiable. '
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ILLUSTRATIVE EXAMPLES
example: 1
Find %: when x? + Xy + y* = 100.
Solution:
Given, ¥ axy+y = 100 —

Keaping in mind that

" dy _
V1]+2Fdx =0
- Ao
[-"-'-"'?'5"]':';|l = —2%—Y
oy x4y
dr ~  x+2y

d
I %22 + ¥ = g9, find EE

2 +[x.%
=
=
Exampla: 2
Solution:
G,

Differentiating both si
%x.ua3+§?-|.-3ﬂ 0

2R 4 428 = a?h

y is a function of x, diferantialing poth sides w.rt.

das of (i) w.rl. % regarding y 8s a func

ion of x, wa gl

3 “dx
1 1 dy _
= ﬁ-'-ﬁﬁ e v
dy _ vy Y
—J E = -.:;:ﬁ :
:3
Example i
If ain? y + cos xy =, find —.
- : 2y 4+ 005Xy = T
iy o [ } fx, we geat
gs!;:?antiating poth sides of () w.rl % regarding y as as function of X ge

. dy )
2(sin ¥) -mﬂy-g —Emw-[ﬂa+ r-1] 0

oy _
= tEsinwnsy—xsmxy‘.ld—I-_ y &in Xy
| : dy .
| = (sin 2y —x 8N WJEE = Y 5N Xy
| dy _ _ ysinxy
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) == = gif »
Solution
Given, ¥ = .,I'En-sxq-y
= ¥ = cosx 4 ¥
= ¥ -y = cosx
ddtfﬂmntfathg WL X, wa get
dy dy .
syl MY
de o ~&in X
dy
1=2y)—L _
= { F}dx 8in x

253 Logarithmic Differentiation
In ceder 1o simplify tha differentiation of som
Such & process is callas logarithmic differ

Efunclions, we first 1ake logaritnms and tharn, Uiffarantias,
1. Whenlhe givan functionis g product

entiation, This ig usually done in twa ¥pes of Probdery

of soma functions, then the logarithm Convarts the Produgt
Into 8 sum and this faciitates lhe differentiation,
2. When tha vatighla oo

Curs in the exponenti.e. the given fune
Derivative of whare u,

ion is of the form [i=)] ().
v are dilerentlabla functions of »
Lat

¥ = W, taking logarithm of both sides, we oet
logy = v log u, differentiating w.r.. X, we get
1 dy d
F oy - E{'ﬁ"’lﬂﬂﬂ}
= S aigr s
=5 ol vdxtvlnﬂul M mtvlngm
ILLUSTHATWEEKAMPLES
Example: 1
Diflerentiate tha fallowing functions wirt, -
(a) x*
(b) cos (x+),
Solution:
(&) Let Y = ¥,
Taking logarithm of both sides, we gat
logy = xlog x,
Lifferentiating w.rt. x, we get
L S
F dx m N ;+IID;II1
= g—:'=¥[1+|ﬂl}#}'ﬂ'f1+lﬂﬂﬂ}
(b) Let ¥ = Cos (»*}, differentiating w.rt, ¥, we get
_—dﬂ.‘"‘
. '
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dy eoay O ox
= sin(x ].a{: ]

a
MNow E‘ii"] has been obtained preciously in part (a).

dy .
50, e sin (x*). ¥*(1 + log x)
Example: 2
dy log X
if 3 = &Y, prove that — = ———=
* " dx (14 logx)f
Solution:
Given, x¥ = g*¥, laking logarithm of both sides, we gel
ylogx = (x-ylloge=(x-y) 1=x-¥
= Vy+ylogx = x
= (1+logx}y = x
bt
=4 ¥ = T+logx differantiating w.r.t. x, we get
1
i h+|ng>:}1-:.{n+i] U,
de (1+logx) (+logxf  (1+logxf

25.4 Derivatives of Functions in Paramaetric forms

If x and y are two variables such ihat both are explicilly expressed in terms of a third variable, say .
L. if x = f(t) and y = gt} then such functions are called parameiric functions and the third variable is

called the parametar.
in order to find the derivative of a function in parametric form, we use chain rule.

dy _ dy ox
ot de
dy
dy dt -
0f = = g_.i. : [pmwdla i D]
|
ILLUSTRATIVE EXAMPLES
Example: 1
L AP
It x = alt + sint), y = a(1—cos 1), fiing l::I:-:aH: >
Solution:
Givan, ¥ = aft+sint)andy=all-cost)

Diffarentiating both w.rt. t, we gt

a(1+cost)

2|2 alg

n

af0=(-sint))=asinl.
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& dy
! SO |
We know that A ux
dt
2zin 1 COs !
dy asint 2 2 t
i, - = = tﬂﬂ —
dx  all+cost) 2cos? - 2
2
M)l _ wn®
(8, - g -
Example: 2
1
Differantiate 'Iu_x"? w.rl, xd,
Solution:
3
Let y=-,ii—ﬂarﬂz=x3mlhatgf—zismmed
Differantiating both w.rl. x, wa gat
dy  (1-¢.3@ - (0-3x%) 3
de - =-xF " (1-xr
P dz
and e 32,
dy
gy _ dx
il
'?'I?- = sz o 1 - L 1
dz © 10F B g
ILLUSTRATIVE EXAMPLES FROM GATE
QAaZ Hx=a(@+snB)andy =a{i-cos ), then dyidx will be equal to
@
{ ﬂ"l[—] {E]
a) 5 (b} cos 5
tan| 2 8
() = (d) mt[g] [ME, GATE-2004, 1 mark]
Solution: (¢)
Given,

X = a(0+and)y=all-coss)

88

- E{1+Eﬂﬂﬂi.%=aainﬂ

(8 8

i dxjdB  all+cose)
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@.43 Ity = tx} is the solution of zi;r - 0, with the boundary conditions y = 5§ atx = 0, and % -2
X

atr = 10, {15) =
[EC, GATE-2014 : 2 Marks, Set-2]

Solution :
dy
o =1
dy
| % ¢
o C, =2
y = Cp+GCy
at = 1)
¥ m EICE
¥y = 2x+ 5
at y(15) = 2% 15+5=35

2.6 APPLICATIONS OF DERIVATIVES

There are two areas where derivatives are used
1. Increasingand Decreasing Functions
2. Maximaand Minima
{a) Relative maxima and minima
(b) Absolute maxima and minima
3. Taylor's and Maclaurin's Series Expansion of Funclions
4. Slope determination of line

2.6.1 Increasing and Decreasing Functions
Let f be a real valued function defined in an interval D {a subsat of R). then f is called an incraasing
function in an interval D, (a subset of D) it
for all ®.. % & D,
My € dy = f(x,) S flae,)
and f is called a strict increasing function (or monotonically
X, %y € Dy,

increasing function) in D, iff

for all
x, <X = fx) < f{xg)-
"|"i|.

, || Bi¥
L - : ity
| a — D, —
| Strict incraaging In Oy
. (a) (o} .

Analogously, | is called a decreasing functian in an interval D, (a subset of D) iff
: for all Ky "'1 E Dgn
E g € % = flxy) 2 H(x)

—
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and 1 ig called a strict decreasing funclion (or monotonically decreasing function) in 0,

lexr all X, By € D,

M€ Ky =2 l(x) > 1%,
¥ 4 ¥4

7

e
iz,
f=a)
L i
e

L

II1Jl.|

i >
0 P [, 0 11—
Doeasing in Dy Siric| decraaning in 0,

) {E)]

2.6.1.1 Conditions for an Increasing or a Decreasing Function
Now we shall see how 1o use derivalive of & funchon 1o determine where it IS INCreasing and wharg i

is decraasing,
We know that tha derivative (if it exists) at a point P ol a curve reprasants the siopa of tha tangent i
ihe curve at P,

|.| p \I L 3

"l _;._x
b [, — 0 — 0, o

(8] L1

Intuitively, from above fig. (1) we see that if { is a strict Increasing function in O, (a subset of D)), than
the tangent to the curve y = i(x} at every point of D, makes an acute angle y with the positive
direction of x-axis, therefore lan y > 0= F(x}) > 0lorall xe D,

Analogously, from above figure (i) we see thatif { is a strict decreasing function in D, (a subseioi D)),
then the tangent fo the curve y = I(x) at every point of D, makes obluse angle y with the positive
diraction of x-axis, therefore, tan ¢ < 0 = {x) < O for gll x e 0.,

But this intuition may tail, for example, consider the function fix)=»%. 0, =R.

?T

A portion of its graph is shown in above figure. It is a strict increasing function. However, here
Fix) = 3x% and at x = 0, F(0) = 0, 5o the slope of the tangent at x = 0 is not positive, it is zero
In fact, we have:

1. Ifafunciionlis |ﬁﬂlEEEiﬂg in ﬂ.l{a. subset of DI} than F[I] =0forall x g D.,.
2. Ifafunction(is decraasing in DE (& subsat of D'|]|| then F(x) 5 0 for all x & Di;..

“Scanned by CamScanner
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Convarsaly, common sense 185 us 1h

is positive and decreasing whan iis i
ate i |
Thearem 1: If a function f ks comlns q_":f[iharlﬂé & negative. We state these resulls ag fiollcrws:

k], and deri -
1. F{x)20forallxe (a. b), then t s incrﬁaﬁiné s h]nvama in (a, b) and
2 f{x) > Ofor all x € (8, b), then fis sirict I'L{:'Easinﬁ in 6. b]
Thearem 2: If & funclion 1 is continuous in [a, b], and derivabla in {a, b) and
1. F{x)=0for all xin {a, b), then H(x) is decreasing in [a o] :
:. F{x} -c ]: lt::'cI gll x € (&, b), then f(x) is sirict d&ﬁrﬂﬂslngl i '[& b].
Corollar IfE !::Ei_p mws.ﬂ Inecrems are based on Lagrange's Mean value Theoram
1 r{;ﬂ’. u? ‘ ion f{x) is continuous in [a, b). derivabla in (. b) and
. >0foralxinia b i i,
increasing in [a, b, } except for & finite number of points where F(x) = 0, than I{x) is stric!

2. Flx)<Dforalxe (a b} except for a fini

3ta funciion is increasing when its rate of change (derivative)

decreasing in [a, b) te number of points where {x) = 0, then Kx) is strict
ILLUSTRATIVE EXAMPLES
Example: 1
Prove that the function f(x) = ax + b is sirictly increasi
Solution: ICtly mncreasing iff a = 0.
Given:

f(x) = ax + b, Lb,=R

Mote that | is conlinuous and difterantiable for all xe B
Ditferentiating the given function wrl x we get F(x) = a.

Now the given function is strictly inrreasing iff Fix) > Oie iffa > 0.
Hence, the given function is stnetly increasing forall xe Riffa = 0

Example: 2

Prove that the function e is strictly increasing on R
Solution:

Let fix) = ™ Oy=R.

Differentiating w.r.t. x, we gat

fix) = e® 2>0fcralixs R,
= [{x) ig strictly increasing on R,

Exampla: 3

Prove that %+5 is a sirictly dacreasing function

Solution:
Let f) = =+5,0,=R~[0]
&
Diff. it wirt. x, we gst F(x) = 24-1. x¥) + 0 = 3
Since % » Olorallxe R, % 0. tharafare,

Fix)<Oforalxe R x20, le, foralixe O
=3 the given function is strictly decreasing.

|
|
}
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Example: 4

Prova that the function f{x} = ¥ — Bx® + 15x — 18 is strictly increasing on R
Solution:

Givan, fix) = x*-6x® + 15x-18,0; = R.

Diff. it w.r.l. we gat Fix) = 3x¥-6.2x + 15.1 = Ax? - dx + 5)

= 3|(x-2P+1]23 (-(x-2FPz0foral xe R)

= F(x) > Dforallxe R

= f{x) is strictly incraasing function for allx & R.
Example: 5

Find the intarvals in which the fallowing functions ara strictly increasing or strictly I:IEl:FEElEing
{a) f(x) = 10 - &x - 2¢®
(b} f(x) = »f - 12%2 &+ 36x + 17
o) fx)=-20 - - 12¢ + 1
Solution:
(a) Given, fix) = 10-6x-2 D, = R.
Differentiating it w.r.l. x, wa gat

3
i) = 0-B1-2 2x=H-=dx =4 :"H"E'].
Putting. (x) = 0, ws gat 2&1.430—156 = 0
|
= :.:+1E_ = I:I'
= P — _.E
Z

So there is only one critical point which is % = *g
Plotting this critical point on the number line we get the following picture

— —r

3

5o the critical point divides the real number line into two regions which are x e [-- -E]
Yl
3
and x e [—Er"]
Now we find (0} = -6 which is negative and so the region x & [—%,m ] (which confains
% = 0} is the region where the function is sirictly decreasing.

, 3
Theretora in the other region i.e. x e {—w.- E] 'S the region in which the function is strictly

incraasing. This Is shown in the following diagram with the sian of Fx) | fthe
a ¢ {x} in each region o

- -_

#afea 1
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e
{b) Given, . f{HJ=x3—1EH'?+EEx+1?,D=H-
Differentiating w.r.t. x. we gat '
Fix) = 3x? - 24x + 38
= 3(x® - Bx + 12)
| = Hx-2){x-E).
Putting, f{x) = Oie. 3(x-2) (x-6) = O
= (x=-2)(x-8) = 0
= " ® = 2or X =6 are tha two critical points
Plotting these critical paints on the number line we get the following picture

(c)

& ————

2
So the critical point divides the real number I'rug into thres regions which are xe (~=, 2) and
%€ (2,6)and x & (B, w),
MNow we find F(0) = 3(0 - 2} (0 - &) = +36 which is positive and 5o in the region x & (=, 2)
(which containg x = 0), the function is sirictly increasing.
Therefare in the next reglon i.e. x & (2, 6), the function is strictly decreasing and in the next
region x & (8, =), the function is again strictly increasing. This is shown in the following
diagram with the sign of Fix) in aach region of the number line.

* -

- -+ 4
2 ]
Sa the final region in which the function strictly increasing is x & (—=, 2) w (6, =) and the
region in which the function is sirictly decreasing is x & (2, 6).
Given, fix) = -2¢*- ¥ - 12x + 1,0, =R
Differantiating w.rt. x, wa geat
=) = —6® — 18x - 12

= G0+ 3+ 2) " - +
= =6(x+2)(x+ 1) ) -1 *
Putting, fix) = Die -Bx+2) X+ 1) =0
= (% +2){x+1) = O
= x = =2 and x = -1 are the critical poinis
Piotting these critical points on the number line we get the following ploture

= s -
So the critical point divides the .r':al number Ii:w into three regions which are x e (-, -2)
andx e (-2, -1)and x & (-1, =).
Mow we find F{0) = - 8(0 + 2) (0 + 1}=-12 which is negative and 50 in the reglon x & (-1, =),
{which contains x = 0), the function is strictly decreasing.
Therefore in the next adjacent ragion on the left Le. x e (-2, -1), the function iz sirictly
increasing and in the next adjacent region on the left x e (=sa, =2), the function is again
strictly decreasing. This is shown in the following diagram with the sign of F(x) in sach
ragion of the numiber lina.

o+ =

e i
L

2 3
So the final region In which the function strictly increasing is x € (-2, -1) and the region in

which the function is strictly decreasing is x & (—ee, <2} u (-1, =9} .
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ILLUSTRATIVE EXAMPLES FROM GATE
Q.44 The derivative of the symmaetric function drawn in given figure will look like

(@) I (o) /\T/_\

ic) /\T (d)

Solution: ()

Given funchion has negative slope in +ve half and +va slope in—ve half. 5o its differentiation
curve is salistied by (g).

k.
-

[EC. GATE-2005, 2 marks)

i

Q.45 As x increased from — io =, the functicn f(x) =

1+¢*
() monotonically increases

(b) monatenically decreases

() increases to a maximum value and then decreases

(d) decrea ini i
o e 588 10 & minimum value and then increases [EC. GATE-2008, 2 marks]

E‘“['H-E:J—EE“ = a*
(1+e*)F (1+e* )

since e* is +ve for all values of X, I'x) s +va
increases,

Q.48 Consider the plol fix) versus x as shown below.

Fix) =

for all values of x angd hance f{x) monatonically

Suppose Flx) = _[_Iaf{y:lu}r - Which one of the foowing is a graph of Flx)?
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[EC, 2016 : 1 Mark, Set-1]

Solution: (c)

F'x) = =) which Is density function
Fix)= fx) <Owhenx <0
Flx) is decreasing forx <0

F'ix) = fix) > O whenx > 0
Flx) s increasing for x = 0

(.47 Let £x) be a polynomial and gix) = f(x) be s derivative. If the degree of [x) + f-x)) is 10, then
the degree of (gix) — g{-«))is __ [CS, 2016 : 1 Mark, Set-2]

Solution:
If fx) + A-x) s dagree 10
{x) = a.,n.rwi-ap.tﬂ' ....... +ax+ 8y
f-x) = ipx'" —agx’. . .~ Bu + &
M)+ Ax) = apr'’ +ap® o+ ay
Mow glx) = Fix) = 10a,.2% + Ba0® 4 _+a,
gi-x) = Fl-x) = -10a, " + Qagf+ | +a
gx) - K-x}= Eﬂﬂ.nﬂ-r b
Clearly degree of {g{x) - gi-x)) is 9.

.48 As x varies from -1 to +3, which one of the following describes tha bahaviour of the function
fix) = - 32 + 17
(a) fx)increases monotonically.
(b} fx)increases, then decreases and increaseas again,
{c) fix) decreases, thenincreases and decreases again.
(d) fix) increases and then decreases [EC, 2016 : 1 Mark, Set-2]

Solution: (b)
M) = % - B 4 1
i) = 3 - 6x
flx) =0
I -Bx=0
(x-2)=0
x=02
Flx) = Gx -6
At x=0 {0) = -6 maxima
x=2 (2} = & minima

mﬂl IeU vy cvairiouaiiiiel
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2.6.2 RelativeorLocal Maxima and Minima (of function of a single independent vayy,
Deafinitlons: A function fix) is said to be a local or relative maximurm at x =a, if there exist a POSilfyg
numbar § such that a + &) < i(a) lor all values of & other than zaro, in the interval (-5, &),

A function I(x} is said to be a local or relative minimum at x = a, if there exists a positive NUmber §
such thal {a + &) = I{a} for all values of 8, other than zero, in the interval (=5, 8).

Maximum and Minimum values of a funclion are together also called extreme values or irhing
values and the points at which they are attained are called points of maxima and minima,

The points at which a function has exireme values are callad Turning Points

1.6.2.1 Properties of Relative Maxima and Minima

1. Alleast one maximum or ane minimum must e betwean two aqual values of a function,

2. Maximum and minimum values must occur alternatively.

3. There may be several maximum or minimum values of same funclion.

4. Afunction y = i(x) is maximum at x = a, If dy/dx changes sign from +ve o -ve as x passas
througha.

S, A function y = f{x) is minimum at x = a, i dy/dx changes sign from —ve and +ve as x Pasgses
through a,

6. If the sign ol dy/dx does not change while x passes through a, then y is neither maximum gy
minimum at x = a.

2622 Conditions for Maximum or Minimum Values
The necessary condition that #(x) should have a maximum or a minimum at x = a is that Fla) = g,

2.6.2.3 Definition of Stationary Values
A function #(x) Is said 1o be stationary at x = a if F{a) = 0.
Thus for a function f(x) to be a maximum or minimum at x = a it must be stationary at x = g

2.6.2.4 Sufficient Conditions of Maximum or Minimum Values
There is a maximum of f(x) at x = a if fla) = 0 and f"{a) is negativa.
Similarly thera is a minimum of fHx)atx = a if F{a) = 0 and (a) is positive
Note: If f*{a) is also egual 10 zero, then we can show that far a Maximum or a minimum of f{x) at
X =&, we must have ™{a) = 0. Then, if ™{a) is negative, there will be a maximum at x = g and |f i™a)
is positive there will be minimum at x = a,
In general if, #(a) = #(a) = F{a) = . '(a] = 0 and f'{a) = O then n must an even integer for
maximum or minimum. Also for a maximum "{a) must be negative and for a minimum f"(a) must be
positive.

2.6.25 Working rule for Maxima and Minima of fix)

1. Find '{x) and equate to zero.

2. Solve the resulting equation for x. Let its roots be 1 - E Then f(x) is stationary at x = a,, 8,
coecresens THUS X = 8y, By, oo, are tha only points at which f{x) can be MEXIMILIT OF & rrenimum.

3. Find #(x) and substitute in it by terms x = = TR - PR wherever {x) is x we have a
maximum and wherever t(x) iz +ve. we have a minimum.

4. Kf(a,) =0, find P(x) put x = a,init. I f"(a ) » 0, there is neither a MaExXimum nor & minemum
Blx=a, Hf""‘fa,j =0, find {x) and put x = ay init. If ™(a. ) is -ve, we have maxirnum at ¥ = 2,
it it is positive there is a minimum at x = a,. Ifa,) is zero, we must find f(x), and so on, Repeal
the above process for each root of the aquation Fix) = 0,
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ILLUSTRATIVE EXAMPLES FROM GATE

Q.49 Given a function fix, y) = 457 + 6y® - Bx - dy + B,
The optimal value of f{x, v

(a) isa minimum agual to 10/3 (b} is & maxirrum equal to 10/3
(c) isa minimum egqual to B3 (d) is a maximum equal o B3
[CE, GATE-2010, 2 marks]
Solution: (&)
fix,y) = 4 + Gy* —Bx -4y + B
of
E; = Bx-8
of
= = 12y=4
Y 2y
e i al
Fu ,— = — =
tting I “”‘day 0
Bx-8 = Oand12y-4=0
Given, X = Tandy= —

3
[1%] is the only stationary paint

Es
m =% = E
4 | ax’ Ll}

3

[ &
§ = ‘El ]=ﬂ

1
'3

= =12

| “'_‘?L%}

Sinca, t=8x12=98
8 =0

Since, m> 5,

wa have either a maxima or minima al [l%]

af 1] : . "
i = = ] i — nt of minima.
also since, r [a-“?lti] 8 > 0, the pain [1, 3 8 a poi

The minmum value is
1 10

[['LE] = 4?(12'"'5?(%-31{' 4?‘:%-}-3-?

10
So the optimal value of f{x, y) is a minimum agual to 3
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Q.50 While minimizing the function f), necessary and sufficient conditions for a point 5 5
a minima are

@) f{xy)>0andf(x)=0 (o) f(xg)<0and f*{xg)=0
e} Fxg)=0andf"(xy)=0 (d) F{xg)=0andf"(x5)=0
[CE, GATE-2015 : 1 Mark, Set.qy)
Solution: (d)
flx) has a local minimum at x = x,
[ Flxg) = O
and (s, > 0
Q.51 The distance between the origin and the point nearest to it on the surface 27 = 1 + xy s
{a) 1 (b} —-"I'—E-
2
€ J3 (d) 2
[ME, GATE-2009, 2 markg)
Solution: (a)

Lel the point be (x, v, z) on surlace 22 = 1 + xy
Digtance fromorigin =1 = fix ~ 0 +(y-0F +(2-0F = Vi 4y 422

[ = ,!x!+3rﬂ4.1+;|:1l,r [Elm::522='i+xyiagl1.-mi

This distance is shortest when ! is minimum we need to find minima of 2 + v + 1+ Xy

Lat Un.'l:E+j.l'2+1+l:',,r
% = 2%+ ¥
ol
‘ﬂ_jl' = E!.u'-l-!{
au du
E-n arid EI':D
= 2x+y =0 and2y+x=0

J0hving simultansoushy, we get
=0 and y=0
s the only solution and sa (0, 0) is the anly stationary point,

Pcay, = i%?:?
B = ﬂ"=t1
dhhy
e
dy
Since M= 2xl=dned=1
We have case 1, Le. sither a maximum or minimum exists at (0, 1))
| Mow, since r= 20,50t aminima at (D, D).

By,
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Mow at x=0 y=0 z= ﬁ*“=m,1

So, the point nearest to the origin on surface 22 = 1 + xyis (0, 0. 1)
Thﬁdﬂtﬂ-me I = .||‘:|-;'+D-E‘+-F =

So, correct answer is choice {a).

Q.52 At x = 0, the function fx) = |x| has
{a) & minimum

h_ i
{c) a paint of inflaction () a maximum

{d) neither a maximum nor minimurm

[ME, GATE-2015 : 1 Mark, Set-2]
Angwer: (a)

Q.83 The function f(x) = 2% - x2 + 2 has
(8) a&maxima &t x = 1 and a minima al x =5

y (b} amaxmaatx=1andaminima at x=-5
(c) only a maxima af x = 1

(d) onky aminima atx = 1
[EE, GATE-2011, 2 marks]

Solutlon: (c)
fix) = 2x-w+3
Fix) = 2-2x=0
= % = 1is the stationary poirt
“{x) = -2
= (1) = 20

Socatx = 1 we have a relative maxima,

Q.54 If the sum of tha diagonal elements of a 2 x 2 symmeatric matrix ie -8, then the masimum
possibke value of detarminant of the matrix is ;

[EE, GATE-2015 : 1 Mark, Sei-1]
Salution: (8)

Consider a symmetric malrix 4 = [‘; s]

Givena+ d=-6

|.ﬁ.| = gd - B¢
Mow sinca b* is always non-negative, maximum deterrminant will come when b? = 0.
S0 we naed to maximize

|A| = 8d-0 =ad=ax 6+ a)=—&°-6s

d| A
oa
= & = -3 s the only stationary point

==-28-6=0

Since [%I;ll = =2 < {0, wa have a maximum al 8 = -3,

Since 8 + d = -6, Comesponding value of o= =3.
Mow the maximum value of daterminant is
lAl = ag=-ax-a-0

i

§
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Q.55 For aright angled trangle, if the sum of the lengths of the hypotenuse and a side s kapt COnstany
inorder (o have maximum area of the triangle, the angle batween th hypatenuesa and the sidy 3

(a) 12 (by 36"
(c) 8r () a5* [EC, ELATE-EDM:EM&:&:,SQM]
Solution : [g)
h= x4y
‘G|'II"E‘I'I'hEJ. x+1|k?+}'a = k{cnﬂﬂﬂl‘ﬂ}
ey = (k-xf
ye m k¥ - 2hx
Area, A= -2-1--:-1_.'

2
o Ed.{kz - Zx)

2
Let, W) = AZ = l}{k"’ - 2kx)
Pix) = &[Ek’x - Bhex?)
fx)=0
2k -6k¥ =D
k
X = E. 0
Al . Mz} <0
3
< Area ls maximum al x =%
2k k2
S
v 3 3
y = 5%.
tang = §=-.E§
8= gpr
Q.56 Which one of the tollowing graphs describas the function fx) = i
- ()
X I i
°d fix) :
Vi,
¥ | W i

[EC, GATE-2015 : 2 Marks, Set-1]
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solution: (b)
M) = e e x4 1)
Fix) = &*(2x + 1)=& +x+ 1)

= & - xf)= 6 (x) (1 -x)
Pumting F(x) = 0, we get

r=0 o ¥r=1
Plx) = @51 - 2x) - g%(x - #2) = & (1 - 3x + 2

Atx =0, Mz} =1 (50 we have a minimum),
1
Atxm 1, (x) = 5 (50 we have & maxirmum).

Only curve (b) shows a single lacal minimum atx = 0 and & single local maximum atx = 1

(.67 The maximum area (in square unk) of  rectangle whose veriices fes on the sllipse 2 + 47 = 1

is
[EC, GATE-2015 : 2 Marks, Sel-1]
Solution: (4) i
.I?'l' 4‘.',2 = 1 m
Arag of rectangle '
= 2x - 2y = dxy :
Let ! = (Arsa)® = 167 2 0 |50 R MR | -2y
Ay 1 = x®) [+ 1=x% =4y i
Flx} = 0 | l
1 !
We get, I = T !
2z i
1 | 21 |
¥ = :"E
braa =

dxy = dleileﬁ-fl

263 Working Rules for Finding (Absolute) Maximum and Minimum in Range [a, b]
If a fursetion | is diffierentiable in [a, b] except (possibly) at finitely many points, then to find (absolule)
miaximum and minimum values adopt the foliowing procedure:

1. Evaluate f(x) at the paints where F(x) = 0.
2. Evaluate f{x) at the paints where derivative fails to exist.

3. Findf(a) and fib).
Then the maximum of these values is the abssolute maximum of the given function f and the minimum

of these values iz the absolute minimum of the given function £,

ILLUSTRATIVE EXAMPLES

! Example: 1

Find the absolute maximum and minimum vaiues of:
{a) f(x)=2x®-0x%+ 12x-5in [0, 3]

(b} f(x) = 12 43— 6x'3, x & [-1, 1]

Also find points of maxima and minima.
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Solution:

(a) Given f{x) =2 -0x? + 12x=5
It is differantiabie for all x in [0, 3], sinca it is a polynomial
Differentiating (i) w.r.1. x, we ge

Fix)

§

=5
=N
=
=B

=2.3% - 0.2% + 12 = Bx¥ - 3x +2)

flx) = 0

B(x*-3x+2) = 0

-3 +2 =10

(x-1){x-2) = 0
*e 1,2

Also 1, 2 both are in [0, 3], therefora 1 and 2 both are stationary points or turmin

Furthar,

and

Therafore, the absolute maximum value = 4 and the abeolute minemum valie = -

(1) = 217-8124121-5=2-0+12-5=0
() = 28-9224122-5= 16-36+24-5=-14
0} = -5

H3) = 23 -9374+123-5=54-B14+3WB-5=4

paint of maxima is 3 and the paint of minima is 0.

(b) Given,

) = 1243 - B, x & [=1, 1]

Differentiating (i) w.r.t. x, wa gat

i

=

4

¢ 1 2 =
Fix) = ‘2-51”3 -'E.EJ{_!'I: = 16x'= - el —;—-a:ixm L
(@) = O
2(8x - 1)
T 0
L
B

1 ] - :
Az 3 -1. 1] g s critical point,
Also we note that f is not differentiable atx =,

1 473 Vi [
f[-] - 12[_1.} -8l 1 1 !
E 8 B) ~ 12[?] 53
- 12-_3_3 g
12-13 3 - I—ﬂ = —:I—
0} = 120-60=0

H-1) = 1201212 = 424 B.(-1
=141 -B.-1)= 18
fl1) = 12914 . §1® = 12181 =g

DE g

-

- iy

9 ooty

5. The

Therafore, the absolute maximum value = 18 and the absolute minimum valus = 2 e

point of maxima s -1 and the point of minima is L ,

.
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Example: 2
Itis given that at x = 1, the function x* - 62xF + ax + 9 attaing its maximum valua in the interval

[0, 2]. Find the value of a.

Solution:
Let f(x) = x*-B2x +ax + 9 e (i}
It is differentiable for all x i [0, 2]
Diferantiating (D w.rl, x, wa gat
Flx) = 4x7- 124x + @
= (1) = 411241 4+a=8-120
Given that at x = 1, the fur!-c:tlun (i} has maximum value, therefore, x = 1 is a point of maxima
= 1ig a critical point
i 1} = 0
a-120 = 0
a = 110

IS I A

ILLUSTRATIVE EXAMPLES FROM GATE
.58 The function f{x) = 2x® - 3x® - 38x + 2 has ils maxima at

(@) x=-2only (b) x = 0 only
{c) x=3only {d) bothx ==2andx =3
[CE, GATE-2004, 2 marks]

Solution: (&)

Putting

Fle) = Brf -Bx-36=0

- 2 -x-8 = 0

= X = 3or=2

Now M(x) = 12x-6

and i(3) = 30> 0{minima)

and F{=2) = -30 < 0 (maxima)

Hence maxima is at x = -2 onfy.
Q.58 The right circular cone of largest volume that can be enclosed by a sphere of 1 mradius has a

height of

(@) 1/3m (b)) 23m

© Eﬂm (d) 43m [ME, GATE-2005, 2 marks]
Solution: [u]

2+ (h=-12F=1 s
Rehf-2h+1=1 A h 1
2 = Sh—h?
1 h
Volume of the cone, Ve E:n:rEh ‘ i

v Zen-nih=2ien® —h)

3
av _ Biah-3n7)
dn 3
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;ﬂh -0 for minima and maxima
ah-3n =0
h{4-3h) = 0

4
b= E.ﬂ

n
H- — d_E.I
W 3{ )
h=0:V= 1—“:[: minirma

b= & - e -%{D rnaxima

3

&
. Wolume is maximum when X = 5

Q.60 Tha minimum value of function y = ¥® in the interval [1, 5] is

(a) D (b} 1
c) 25 (d) undefined
[ME, GATE-2007, 1 mark]
Solution: (b)
Gi‘ﬂ'ﬂn. = ;|||:'i'r
dy
= el fxslatx=
Py .
= F], = 2which is +ve
=l
&0 we have a local minima gt x = 0
al = 0, ¥=0
but since x =015
it is nol & candidata lor minima oF maxima in thal range
At the and paint o= 1
| ¥ o= |
at second end poanl x o= B
Yy =25

S0, absolute minimurm value of funclion In [1, 5] is 1.
Q.61 Atx = 0, the function f(x) = x® + 1 has

(@) amaximum valus (b) aminimum value
(c) asingularity {d) a point of inflection
[ME, GATE-2012, 1 mark]
Solution: (d)
%) = 2@ +1
Put Fix) = O
= I3xd w0
= » = 0isthe only critical point
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.

at this crifical point

Pix) = 6x
Fl0) = 6x0=0
Now (%) = 6 and
50 (0} = &which s non zero,

this function has a point of inflection at x = 0.

o.62 For the function rr.:-:':} oo N & tha MEXIMUT QCours whan x is 'E‘qUEI to

(@) 2 (o) 1
(R (d) -1 [EE, GATE-20085, 2 marks]
Solution: (&)
Hx) = »® g
Fix) = ¥ (e + 0" x2¢=8"(2x- )
Putting t'(x) = O
2w -x = 0
2% =0
x=00rx =2 are the stationary points.
Mo, () = @7%{2-2x) + (2% - x?) (-e™)
= @ (2 -2 -(P2u-uf) =0 (2 - dx + D)
atx =10 o) = e?(0-0+2)=2
Since f(x) = 2 I8 > 0 al x = 0 wa have a minima.
Mowal x = 2 F2) = e?(2-4x2+2)
s g ?(4=84+2)
= -2ef<0

s at % = 2we have a maxima.

Q.63 Consider function f(x) = (x*-4)¥ where x is a real number. Then the function has
{a) only one minimum (o) only two minima
{c) three minima (d) threemaxima
[EE. GATE-2008, 2 marks)
Solution: (b)
fix) = (x*-4)
Fix) = 20 -4)x 2n=dx(x*-4) =0
x =0, x = 2 and x = -2 ara the stalionary pis.
k) = 4x(2x) + (¥ - 4] = 1]
= A[2%® + x¥ - 4] = 435 - 4] = 12" - 16

(0) = -16<0 (so maxima at x = 0}
F(2) = (12)22-16=32>0 (so minima at x = 2)
F-2) = 12(-2F-16=32>0 (s0 manima at x = -2)

. There is only one maxima and only two minima for this function.

Q.84 A cubic polynomial with real coefficients
{a) can possibly have no extrema and No 2er0 Crossings
{b) may have up to three extrema and uplo 2 zero CrossNgs
{c) cannothave more than two exirema and more than three zer crossngs

(d) will abways have an aqual number of extrema and zero crossings
[EE, GATE-2009, 2 marks]
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Solution: (c)
An ™ degree polynomial bends exactly n - 1 times and therelore can have a My,
al

n - 1exiramas. Also an n*' degres potynomial has al most N roots {Zero crossings), Soa cuky
polynomial (degree 3) cannot have more than 2 exirema and cannot have more thap, 5 Eﬁ“
03

Crossings.
Q.65 Att = 0, the function 1(t)= 2 has
(&} aminimum (b) adiscontirwity
(¢} apoint of inflection (d) & maximum
[EE, GATE-2010,
Solution: (d) #Mmarta]
- =
O o
fit) = _EL.IE_
ool
)= 1_E+§_
2t af
#it) e
2t 408
Pt = -5+ -
Al =0, Tt)=0, Ft)<0D
-~ fi1) anains maxima.

Q.66 A functiony =5x2 + 10 x is defined over an open inlerval x = (1, 2). At least at one paint in ths

interval, 3 is exactly
i

(a) 20 b 25
(e} 30 (d)
Solution: (b) [EE, GATE-2013, 2 Marts]
dy
dy - 10x + 10
dy
dxl, . =
dy
™
- x is defined open interval x = (1, 2)
d 1<x<?
= %«:EU
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e
u1ﬁ? which onea of tha [D|i|ﬂl|'|'|l'|g functions is 5“'":“-!',- baunded?
fa) 1 (b) e
ic) *® (d) a2 [EC, GATE-2007, 1 mark]
solution: (d)
From the graphs below, we can see that only e~ Is stricthy bounded
&Y
]
—_——-"'-F'. z=
o= i
» 1 X —¥
= y=o
&Y by
X —'|'F = a
¥= H: V= e"?
(.68 Consader the function f{x) = x® - x - 2. The maximum value of {x} in tha closed merval [4, 4] is
(a) 18 (b) 10
ie) 225 (d) indaterminate
[EC, GATE-2007, 2 marka]
Solution: (a)
fix) = W=n=2=(x+1)(x=2)
Fix) = 2x-1=0
_ 1
o= ¥ = )
(x) = 2
1
E = E > D
1
=o0at i — 2
we have a local minima so this is nol a candidate for maxima in range |4, 4).
My -4} = 18
fl+d) = 10

s0 maximum vakue in range [-4, 4] is 18,

1
Q.89 If ef =x;' then y hae a
(8) maximumatx=a (B) minimum at x = @
{e) maximum at x = &' ) minimum at x = &
[EC., GATE-2010, 2 marks]
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Solution: (a)
E'. - |I:-I.'El\.
Taking log on both sides,
1
= — |
Y= - logx
- . [_l]z_‘..1-| y
= =3 jl:+Ir.':'|';,|:n1 = x?f og x)
; dy _
pratting o 0
l?“—lngr} = 0
K
= logx = 1
= % = @i5asationary point
'y 1 1 2
F = Fxf";]+ti—|[ﬂﬂ]“[—x—!
1
= —:ﬂi; [1+2{1—hgx]]=~F{3-E'ﬂQ“}
i | 1
[H; | =g @-2oge=—
! which is negative.

S0, at ¥ = 8, wa have a maxirmum.

.70 A paint on a curve is said to be an extremum if it is a lecal minimum or a local maxamum. The
number ol distinct exterma for the curve 3x' - 16x*-24x7 « 37 is

ig) O )1
fc) 2 (d) 3
[CS, GATE-2008, 2 marks]
Solution: (d)
{ y = 3k 1663 - 242 + 37
B _ 126 - 4802 - 48x = 0
dx
w1232 - 48x - 48) = 0O
=0
o 12 = 4Bx -48 = O
-dx-4 =10
4+.i6+16 4232 448 5
X = = = =1='H'E
2 i g
::Fy tx=0
3 = 36x° - O6x - 48 Now &
&
—F = 4B%0

o
at 1 2 also E;:-r « 0 (using calculalor)

.. There are 3 axtrema in this function
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Q.71 The Maximum value of
f{x) = x* - 9x¥ + 24x + § in tha interval [1, 6] is.
il (b) 25
e} AN (d) 4
[EC, EE, IN, GATE-2012, 2 marke]

golution: (c)
wa nead absolute maximum of
i) = 2 - Gx¥ + 24x + 5 in the interval [1, ]
First find bocal maximum if any by putting f{x) = 0.
la. Fix) = 3 -1Bx + 24 =0
g, ¥=6x+8=0

X = 2.4
Now (%) = Bx-18
"(2) = 12-18=-6<0 (Sox = 2is a point of iocal maxmmum)
and "4) = 24-18=+8>0 (S0x =4 isa point of local minimum)

Mow tabulate the values of f at end point of interval and at local maxirmum paint. to find
gbesolute Maximum in given range, as shown bakow;

® | {x)

Clearly the absolute maxima isatx =6
and absolute maximom valua is 1.

Q.72 Consider the function f{x) = sin (x] in tha Interval % e [r/4, Tw/d]. The number and location{s) of
the local minima af this function are

(a) One,atnf2 {b) One,at3n/2
(c) Two, at n/2 and 3r/2 (d) Twa, atn/d and 3n/2
[CS, GATE-2012. 1 mark]
Solution: (b)
-y X 34 I

4 2 i

plot of sin x given abave, we can easily see that in the range [r/4, Tr/d], there is anly

Fram the
one local minima, at 3m2.

Q.73 Lat f: [-1, 1] = A, where flx} = 53 - ¢4~ 10. The minimum value of fx) is ,
[IN, 2018 : 2 Marks]

Solution:
fa) = 203 =2 =10 in [-1.1]

Pla) = B - A
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for minima and maxima

Fix) = 0
fx? - d? =0
2(3=-2r) =10
3
=00 3
(x) = 12x - 124% §
for x=0 F(0) = 0
3 3
for x=3 F"[E]- 18 - 27 = - 9 < 0 maxima
at rm=1f{-1)=-2-1-10=-13
al x=1H1)=2=-1-10=-8

Atx = =1, function attains giobal minimum value with fs) o =

(.74 The maximum value attained by the function fx) = x{z - 1} (x = 2} intheinterval [1, 2] is
[EE. 2016 : 1 Mark, Ser.1]

Solution:
fix) = 2= 352 4 2¢ [1. 2]
Flx) =3x -6x 4+ 2
Flx) = O fer stationary point

slationary points are 14 -I—
¥3

only 1+% liesin [1, 2]

f1)=0
f2)=0

1 2
f‘[f'lf—] ===
V3~ T3z
Maximum value is 0.
Q.75 The optimum value of the function Rx) =2 -4+ 2is

(@) 2 (maximum) (b) 2 {mind
{c} -2 (maxirmum) {d) —EETF':'IiI‘ITI':::'::'!:I
[CE. 2016 : 1 Mark, Set-1l
Solution: (d) |
Fix) = 0
=5 ex=4=0
= x = 2 (stationary paint)
Mgl =20

=» Fix) is minimum at r = 2
e, (2P-42)+2=p
= The optimum value of f {x) is -2 (minimum)
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264 Taylor'sand Maclaurin’s Series Expansion of Functions
2641 Taylor's Series

it (i) and its first (n - 1) derivalives be continuous in [a, & + h], and (i) I'(x) exists far avery value
ol x in {@, & « h), then there is at laas| one number &0 < 8 < 1), such thal

2
fla + h) = f{a) + hf{a) + %f"‘{a}+.-.+;££l’"{a+ﬂhil - 0
which is called Taylor's theoremwith Lagrange's form of remainder, the remainder B, being :—:I"‘ {a + 8h).

Cansider the function dix) = fix)+(a+h-x)Fx)+
where K is defined by

lel+|'1—:|-::l2 |[E|+1'|—K]I"
T—I"ﬁ:{} L K

h? H" -
fla+h) = fla) + hi{a) + ﬁﬂa}*"“*ﬁ“ o (i)
1 Sinca f(x). F{x). ......I"" (x) are continuous in [a, a + h], therafore §(x) is also continuous in
[a.a+h],
o =]
9. &'(x) exists and = %{F{xl -K]
3. Also oa) = ofa+h) [By (ii)]

Hence #ix) satisfies all the conditions of Rolle’s theorem, and inerefore, there exists at least ona
rumber B(0 < @ < 1), such that ¢'(a + 6h) = Die K =F(a +on)D<8<1)

Substituting this value of K in (2), we gat (1),

Cor. 1, Takingn = 1in{1), Taylor's theorem reduces 1o Lagrange's Mean-value thaoram.

Cor. 2. Putting a =0and h = xin (1), we gel
2
iix) = fO) + xA(0)+ '}E—,ﬁﬂ:l'f T %ﬂl-f“{ﬂ} ... (iii})
which is known as Maclaurin's theorem with Lagrange’s form of remainder.

ILLUSTRATIVE EXAMPLES

Example:
if f{x) = log(1 + x). x > 0, using Taylor's thearem, snow [hat for 0 < 8 < %

xt
log (1 + %] = i-?'l'w

Solution:
w2 x?
Deduce that log {1 + X} < H—-E"-I*-a— forx = 0
By Maclaurin's theorsm with remainder Ay, we have
F
i(x) = #0)+xf{0) + %I”l{ﬂhgﬂﬂm )
Here fix} = log(1+x), fi0j=0
1
fix) = e Flo) =1

Jvatiiicu lJy waliliouval i ici
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F{:]’ = 1.1_'_.“.]3 + F{DJ =
e 2 2
and Fx) = (1427 Flex) = | |;1 E:‘,F
:"-" X
Substituting in (1), we gat log (1 + x) = % - M (i
Sincex>0andf >0, x>0
or {1+Ew‘.r3:-1|eﬂ < 1
_x-X, X oty
4 2 FtempP T FTTYH
ol
Hence logf{l+x) = x- 111_ T [by{q”
2.6.4.2 Maclaurin's Series
It 1{x) can be expanded as an infinite serias. then
fix) = #{0) + =F(0) + —f"’lllD]l+ T'"l[m+ ..... ca . (i}

I f{x) possesses derivatives of al orders and the remainder R, in :E.:l on page 154 tends 1o zern as
M — ==, than the Maclaurin's theorem becomes the Maclaurin's series (1),

ILLUSTRATIVE EXAMPLES
Example:
Using Maclaurin's series, expand tan x uplo the term containing x5,
Solution:
Let fix) = tan x fi0)=0
F(x) = zac? =1 + tanx flo) =1
Flx}) = 2tanx sac? x = 2 tan % (1 + tan? x)
= 2tanx + 2 tan¥ x {0} =0
F(0) = 2sec®x + 6lan® x sect x
= 2(1 +18n%) + 6 tan® x(1 + tan? x}
= 2+ 8tan? % + 6 tan'x (0} = 2
P™{0) = 16 tan x sec? x + 24 1an? x gac? «
= 16tan x (1 + tan®x) + 24 tar? x(1 + tar? x)
= 16 tan x + 40 tan® ¥ + 24 tan® x ™{0)=0
{0} = 16 sec? x + 120 tan® x sec? x + 120 tan® x sec? x)
™{0) = 16

and soon,
Substituting the values of f{0), {0}, etc. in the Maclaurin's series, we get
E 33 5
tanx = 0+ X 1+1+E+§2+“D T 1B+
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2643 Expansion by Use of Known Series

when the EXpansion ol a funchion is required onky upto first faw terms, it is often conveniant o
smploy the following well-known series

oW i A ¢ o° &
{ sing=198 3|+5.| T"!+ ...... 2, slnnﬂ=ﬂ+§+§+ﬁ+...-...
g o' @° @ gt of
g, So8@s 1-gri i 4. coshB= T+ orbaton
@ 8 3yl
. (e e B s R
5 tan® EH'E 15 * 6. tan'x=x 3+5 ..........
w2 x x 3
7. &= 1+1+E+'§T+"ﬂ+---------- 8. logll +x)= x—?+T+T+ ..........
e R i
a. m-g:1—x}=—[:+%+%~+r’;—+.......... 10. {t+:]"=1+n;+"”2?‘}ﬁ+"‘" Eﬂ 2% T
ILLUSTRATIVE EXAMPLES
Example:
Expand &5 by Maclaurin's series or otherwise upto the tarm cantaining x*.
Solution:
Wahovs, 8% = Tagnxy B ol 0,
i i 1.2 A
5 1+[:~:—m+ ...... +E }:—H-I'...... +E :-:—E-r ...... +4!{:¢ Y s O
3 ’ 1
- 1+[x—:'—+ ..... ]+%[:-:E———+ ...... ]+B'[13- }+E4U{‘* 1+
2
= 1+Xx+ ?——E—+--
Otherwise, let fix) = a™ fﬂﬂ}=1
: Pix) = e ™oos x f(x)  cos X, #0) =1
(ix) = F(x) cos x = f{x) sin x, 10} =1
#(x} = {x) cos x - 21 (x) sin x — f{x)} co8 X, {0)=0
x) = #(x} cos x — 3f(x) gin x - 3F(x) COS X fix) sin x,f0) =0
and s0 on - ) :
substituting the values of f(0). f(0) etc., in the Maclaurin's series, we obtain
7 3
gtk = -|+1.1+%-1+%-U+E-f—3}|+....
2 I"

X
Y i .!+___+ AN
e 2 a
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ILLUSTRATIVE EXAMPLES FROM GATE
s e i
Q.76 The infinite series 1+ X + Zitgt gt corespondsto
{a) secx | o) e
c) cosx {d) 1+ s5in®x [CE, GATE-2012
Solution: (b) e
.
g = 1+3+ CTRE TR (By McLaurin's EEFI-EIEEIDEmmc.-,]
Q.77 In the Taylor series expansion of & aboul x = 2, the coefficient of {x - 277 s
(a) 1/a) b} 244
{c) el dl g4
P e {a) &' [ME, GATE-2008, 1 Mark)
i} in the neighbourhood of a is,
)= ¥ b,(x-ap
Nl
whare, b= Ma)
i al
Px) = &% 12)=e2
Coefficient of (x -2 = b. = Ll:E] _ﬁ_é
T4 4
Q.78 A series expansion for the function sin g is
g? gt
) ——
8 TR T (B} ﬂ-—§+%r_
o g :
C) 1484+ —4 2 5
TR TR (d) H+ﬂ+5._+ _
31 51
Solution: (b) [ME. GATE-2011, 1 mark]
TR
Q.79 For the function e - :
fiing gis n&™, the linear approximation around x = 2 is
B} 1=
(e) [E+EJ§-|:1+.;'§],[}E-2 1=
Solution: (a) (d) e
il _ [EC. GATE-2007, 1 mark]
aylor's series expansion of flx) allowsd x = 3 g

) = #2) + (x- 2) proy , X -2
i 3 = 2] + — f"'
For linear approximaion We lake only the first g lerms ml'ir .
Here, ) = 12) + (x- 2y o
. fix} = & ang Flx) = s

fix) = @2 (x-2) (o) =(a ~-X)@®
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Q.80 Which ofthe fallowing functions would have only odd powers of x in its Taylor series expansion
ghout the point x = 7

(a) sin (%) b} sin (x2)
S lﬁ ﬁﬂ{“ﬁ} (d) cos(x)  [EC, GATE-2008, 1 mark]
ution: (&
Sinx = x_%+l_£__%+“
2. A B
Com X = 1—%+%—%+
. : s i o
From this, BN m W mm g %
12 15 IF
posdE = (et
MV
S0, sin x? and cos ¥ have only even powers of x
Similarty, gin * = u*-gﬁé_._.
cos xd = ‘._£+ﬂ
T

So, only sin{x¥) has all odd powers of x
-~ oorrect choice is{a).

(.81 In the Taylor series expansion of exp(x) + sin (x) about the point x = &, the coelficient of

(x-x)Fis

(a) expir) (b) 0.5exp(r)

{c) expim)+1 () exp(x)-1 [EC, GATE-2008, 2 marks]
Solution: (b)

fix) = 8"+ sinx
Wewishtoexpandabout X = =&
Taylor's series expansion aboul x = a is

|
fix) = fa)+(x—a)lfa)+ E‘Eﬁf"{aﬁ “;?} %a) ...

Mow absoul X =%

(5 —n)
21

f(x) = fix)+ (x-n)Fix)+ Fin) + ...

()
The coefficient of (x - x) is THE

Here fix) = e + sinx
f{x) = & + cosX
f{x) = &" - sinx

in) = ef -sinm=8%~0=¢&"

El
The coefficient of (x - n)? is therefore Tl =05 expin)
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Q.82 The Taylor serias expansion of s at x = x is given by

e, 14 W = :
fal 14%’5}-,«._. i) Sk JE*--
&
(c) 1—{%11;.-. @ -1+ 220
[EC, GATE-2009, 2 Marks)
Solution: (b)
Let, =g =1
i =mel
¢ t:| [5 b
[ +
—
|
i !2 ‘H k!
fity = - 1_§+§_"'
- @
ft) = _1+E_§+”'
(x-xf (x-n)’
gy

Q.83 The guadratic approximation of
fx) = -"-5athe paint x = 0 i5

(@) aF-6x-5 (b) =& -5
(€) —3c?+ Bx -5 (d) 35-5
ICE, 2016 : 2 Marks, Sat-1]
Solution: (b)

The quadratic approximation of x) ai the pointx =0 is
. P & x 2
fx) = #(0)+ 551 (0) + 5;7(0) = (~6)+ {0} + 5-{-6} =34 - 5

2.6.5 SlopeDetermination of Line

1. This is used to determine slope of straight line in xy plane. For example y = x + 3is a lneits

slope is given by % =1

2. Iftwo lines are perpendicular then product of their slopes is -1
For example let m, be the slope of first line and m, is the slope of second line. I both lines are
parpendicular then
m, -my = -1
3.  The derivatives are also used lo find slope of tangent on any curve,
For example ¥ = l{x}is a curve in x-y plane

;—*: = WRJLHIT J i the slope the tangent at point (X, ¥y

-
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ILLUSTRATIVE EXAMPLES FROM GATE

84 A polynarmial f{x) = .
e tarﬂnu real r:;}s R 8% — 8 with all coefficients positive has

{0} nonegative real roat
{c) oddnumber of real rools

(d) atleastone positive and one nagative real root

Solution: (d) [EC, GATE-2013, 1 Mark]
Using R-H critarion
x| a dy =a,
| 8y a
x| A
W | &
ol B
Whiarg A = H38y—8yay
By

So, from the above table it is clear that there is atleast one sign change in the first columin. So,
at laas! ona posilive and one negative real root.

Q.85 The angie of intersection of tha curves +? = 4y and ¥ = 4x at point (0, 0) is

{a) @ (o) ar
(c) 45° ) ar
[CE, 2018 : 2 Marks, Sat-11]
Solution: (d)
Given cure
=4y ()]
L i
2= 4 dx
= [E";]fu.n] = 0=m, (say)
dy _
dx
()
= dx (0.} i

1
m,= —. wherem’' =0
Lat my, - =

|nr1,_n-1,|_L-Tir-nu1|=|ﬂ|-1;=
ma:‘!um.m;l_ m'+m; | [0+0] .

= 20°

=8 =

M3 | =

|
|
h—-—-.—

—y — e — — e =
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Q.86 How many distine! values of x salisty the agualion gin(x) = /2, where x is in radiang?
ia) 1 (b) 2
ic) 3 (d) 4ormora
[EC, 2016 : 1 Mark, Eat-a]
Solution: (c)

¥

Jﬂ 2

Hence 3 solutions,
.87 Letl ) be a polynomial and glx) = Fix) be its derivative. If the degree of (Rx) + (-} i3 10, then
the degree of (@x) - gi-=)) &

[CS, 2016 : 1 Mark, Set-2)

Solution:
If £x) + A-x) s degrea 10

flx) = Sipx'" +8gr ...+ 8yx + 8g

fiox) = Bypa'" —dgr”.. .~ B+

fx) + fi=x) = Sppx'” #+ 82" +. .. +8&

Mow g(x) = Flx) = 108, + Sad + . .+a,
Gl-x) = Fl-x) = —10a,,5" + Sax® + . . +a,

) - gl-x) = 208,08+ . .
Clearly dagree of {glx) - o{-z)) =31

Q.88 A straight line of the form y = mx + ¢ passes through the origin and the point (x, ¥) = (2, §). The
value of m ig ;

[IN, 2016 : 1 Mark]

Solution:
y=mMr+0C

passing through (0, 0}
0=0+¢ = &= 0

¥ = mx

E=2m
m=3

passing through (2, B)

..., v“...;w_____d_-’f/
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2.7 PARTIALDERIVATIVES
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2.7.1 Definition of Partial Derivative

It a dariuat@ of a function of several independent variables be found with respect 1o any one of
tham. 'rr.a.amng !h& Frthars a8 constants, it Is said 10 be a partial derivative. The operation of finding
the partial derivative of a function of more than one independent variables is called Partial
Differantiation.

The symbals dfdx, Afdy etc., are used to dencte such differentiations and the expressions Judk,
dufdy elc., are respectively called partial differential coefficients of u with respect to x and y.

It u =1Hx v Z) the partial differential cofficient of u with respect to x 1.8, dufdx is obtained by
differentiating u with respect to x keeping y and z as constants,

2.7.2 Second order partial differential coefficients

IFu = Tflx, y) then dujdx or f, and dudy or f, are themseives function of x and y and can be again
differentiated partially.

2(2) 2(2).3(2) 23 I
Wecall axlax | ayl ay | ax| 3y .w[aﬁ]assaumdﬂrﬁafparlualdarwatuuasnfuarujmasﬂme

Fu Fu P Fu

iwaly denoted b . : _
respectively d Y 3.2 W2 Dy Iy
Note: If u = f{x. y) and its partial derivatives are continuous, the arder of differantiation is immaterial
5 3*u #'u
LE., Nax

ILLUSTRATIVE EXAMPLES FROM GATE

=1
80 Letf=v® Whatis ——— atx=2 y=17
WS Lot =Y ay

{a) O (b) In2
(c) 1 ) 3
[ME, GATE-2008, 2 marks]
Solution: (c)
f= y"
Treating x as constanl, we gal

Now wa treat y as a constant and gel,
o R . m
L a =y =Ty
Ay o { :I

whose valle al x =2 andy = 1is = 13- 11+ 2.In1) =1

~Ocadlineu py cdrinscdariner

T e T NP L T Vi LI | e S e [ e L P S R L
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Q.90 If z = xy h{xy), then
0z dz dz oz
H—+y—=0 — ==
gz 0z dz oz
) | M Y e ===
€} "3y ay id) 'fa:+11{hr 0
EC, GATE-2014 :
Solution : (g) [ 1 Mark, Set.g)
dz _ y
i ﬁn-:x;r}wwxy
oz
o = ¥linxy)+ 1| i)
2 _ g
i x fnfxy) ka
9z

- = sinfxy)+ 1

oz

. e

Q.91 The contour on the x-y plane, whera tha partial derivative of 12 +
to the partial derivative of By + 4x with respect 1o v, is

i)

¥ with respect to y is equal

@) y=2 (b} r=2
(€} x=y=4 (d) x-y=0
[EC, GATE-2015 : | Mark, Set-3]

Solution: (a)

Fartial derivative w.rl y ;]-" (%% & _f’] = 2y

Fartial derivative wrt. x %:e ¥+da) =4

From given condition 2y =4

— ¥= 2

2.7.3 Homogenous Functions

An exprassion in which evary term i of the same degree is called hnmngenu_l.s funetian. Thus. aﬂx'

+ap" e A+ va, o' + 8y isa homogenous function of x and y of degreen. This
can also be wrilten as,

”“{ﬁu""h[%]""az[if* ...+E.n_.[%]‘ ﬁﬂﬂ{{]"}
or x"'l[i], where f[i] ig sanrma function of y
® ® X

MNote: To lest whether a given funclion f{x, y) is homogenous or not we put t for x and ty for y in it
If we gat {{tx, ty) = 1" {x, v} the function i(x, v) is homogenous of dagrae n otherwise fix, y) is not 2
nomagenous function.

Note: If uis a hamagenous function of xand y of degrae n then Aufix and Buf@y are also homoganous
function of x and y each being of degree (n -1).

e
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S

2,74 Euler’s Theorem on homogenous functions
fuisa homogenaus function of x and y of degree n, than

IE*. —BE_
aﬂ ?a'ﬁl' "r"rll

Note: Euler's thecrem can be extanded 1o a homogenous function of any number of variables. Thus

: e df
it 1%, % - %) be & homogenous function of x,, x,, ... x, of degree n then, R e
Xy 2

a
= i
M,
ILLUSTRATIVE EXAMPLES
Example:
Show that u = »® 4 y¥ + 3@ is a homogenous function of degres 3.
Solution:
-E — 1 =z L]
Mo, 3 oA+ oy anc
E — z
ol 3y + By
MOW, ma—u+y@ = H(3x" + 3y") + {3y + Bny)
i e

= 3p? = v + Ixy?)
= 3
5o, Euler's theorem says thal u s a homogenous function of degree 3.

28 TOTAL DERIVATIVES
if u = fi(x, y), where x=d.(t)and v = d(1),
du du ox all dy

b a " w aty o
i . e .U il ,
Hera = is called the intal differential coefficient of u with respect to t while i and E are partial
1
derivatives of u

In the same way if u = fix, v, ) where x_y, z are all functions of some variabée [, when
di o de M gy M
dt ~ ax dt Iy ot 2z d
This resuit can be extended to any number of variables,
Corollary 1: If u be a function of x and y, where y is & function of x, then
. By dy
de  ax By dx
Corollary 2 If u = {x. y) and x = 1,(t,. L) and y = I, [t;, L), then

o W Wy

o m  dy

A B Ay

" Frialle v e T
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Corollary 3: If x and v e connecioo by an ooguetion of B fom 0 ¥ = 0 then

ify all ol
rix el oy
2.9 MAXIMA AND MINIMA (OF FUNCTION OF TWUIHDEFEHDEHTFAHAELES]

2.9.1 Definltions
Lot Fx, ) b any lunelion ol two nelopancant varables x and y supposed 16 be continuoys jo, ai
vialues ol thesa variablies in the néigghbrourhiosd of thedr values o and b respectively
Then, i{a, b) s enid 1o he mImm and o minimom vakae of ([, y) sccording as a + h b+ k) e lige
o greatar than fa, b) lor all sulliciently 2mall iIndependent values of h and k., positive or NEgaliva,
provided both of them are nol equal 1o zemw,

2.9.2 NecessaryConditions

The noeceasary coanditione, fhal f{x, ¥l should hava a maximum of minimum al x = a, ¥ = b is tha

il
z = D and d!( =[]
rHl: LR |

i

N w4l i
s

ol

2.9.3 Sufficient Condition for Maxima or Minima

"+2-1 ]""Ij r]‘li
I.alr:[---ﬁl _5;{-’—L - "'l
al HUR C L T L 2

Case 1: fix, v) will have a maximum or a minimum at x = a, y = b, if rt > 82 Furiher, ix. y) is
maximum e minemum according as rin negative of positive

Case 2: y{x, y) will have naither maximum or minimum &t x = a y=bifrt<s® ie x=ay=hisa
saddls pont

Carse 3: If it = 87 this case is doubtiul case and turther advancec investigation 15 needed to daterming
¥shather Hx, y) 15 @ maximum or minimum at x = a. ¥ = b or not. For gata problems case 3 will not
apply. check only case 1 or casa 2.

2.10 THEOREMS OF INTEGRAL CALCULUS
1. Theintegral of the product of a constant and a function is equal to be product of the constant and
the integral of lunclicn,

Thus if A is constant, then [ Alx)dx = A [ i{x)dx
2. The integral of a sum of or difference of a finite rumber of functions is equal to sum or difierence

of integrals, Symbolicaly
J"|f«‘ﬂ thix)ldx)+ . +1 [x)]dx = If.,[]-::ldm : J.r:,J::'I!}dI + Ir:{{x}ux +.. 0+ !’fﬂ:x].ﬂﬁ

2.10.1 Fundamental Formulae

J,':ru1 1
i e ik — dal
1. J.l“'d.ﬁt-—n+1 2 J‘h:dk—h}gx
3, jsinxd: = 0O X 4. I:as % dx = gin ¥
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5, Iauc."’x dx = tan x

7. IEECIMI:EE&L‘:!

9. ‘[ﬁ?‘ﬂ::sin'x
11 fx—ul.:;=_t-:!x=aec";

13, j,r,in b dx = cos hx

2.10.2 Useful Trignometric Identities

L

10,

n.

12,

13.

6. _[cuaec"xdx:-cntx

B, ]'::::Iﬁec Yoot H = -CcOSet X

i |
10 _[-11_—?:::!: = tan-' x

12 Icmhx:a'mlu

E || K |=x an
EI i, e - —_— "
8 |5 |8 |F|™|F5|*
; 1| 1|8
i | O Cl Pl =
E__?E 5 1 8] 1| 0
J3| 1|1
coa| 1 | — L (i} - e
PR 2 || 2 o e
tan | 0 ._.115 1 |3 | 0 || D

Sini=x} = =ginx

COs{-x) = cosx

gsin(x + y) = sinx cosy + cosx siny
8in{x - ¥} = siNxX CO8Y - COSX Siny

COB(X + ¥) = COSX COSY — SiNK Sy
©08(X = ¥) = COSX COSY + Sinx Sy

R ;
- = S
E‘CE[? :I{] X

| R
BJH{E—K ] = COBK
(i) Eiﬂ[-TEE + x] = COSX
(il) sin(x—x) = sinx
(v} sin(r + x) = =sinx
fvil) sin{2x - x) = —sinx
tanx + tany
tanix + ¥k = Tanx tany
lanx —t@any
tanix =¥} = T tanx fany

x T+ 1anx
tan| — -
"[4”] T—tanx

{3 ) » L0
4

“ j+tanx

Juallil Hiouvallilicl

(i) f‘-ﬂﬂ[gﬂ ] = —BinK
(V] COSIE = X) = =CO5X
{vi) cosim+ x) = -cosx

(vill) CoBl2m =X) = CDEX

Calculus |
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colxcoty + 1
Coly + Ol X
COlX Oy +1
coty —colx

; 2lanx
SNy = 28N ¥ cO8x = —F
I+ darm

14, colix + vy} =

15. calfx-vy)=

18.

17. cos(2%) = cos” ¥ - sin” ¥ = 2oos™ K

2lanx
1= tan x
sif x = 1 - cos’ o
cos ¥ = 1 - 8in’ x
e'=cost+ | snl

18,

lan 2% =
19

21

1-tan® x

26N %= ——5—

l=1-
'llaﬂx

ILLUSTRATIVE EXAMPLES FROM GATE

Al

Q.92 Assuming i= /-1 and1is a real number, [ e'dt is

@ L]

() %H[?]
Solutlon: (a)

af3

| = Ia“dr=

T

h
0.93 The ntegral J'sm:* ade is given by
i)

(ay 12
(e} 473

Solution: (c)

F{‘I - c:us?ﬂjsin ade. Let cosd
0

-5l di
atld=0.t=cos0= 1

§canned by CamScanner

Ja .1
(b) .2“45

1 . J3
{d:l E"'l[‘l—?]

[ME. GATE-2008, 2 marks]

n |
1'51{*?]:[?3”51]

(Bl 213
{d) &3
[EC, GATE-2006, 2 marks]

i‘sirlE’ i
h]

dt.
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gli=n.l=COEN= -1

- 1
g0, I = =[[1=-¢% 1 ._1_ —( _l]_[_n..n]
L{ e = | Al Wz 2
| = E-}-E=E
b R -
Q.04 11S= [»® dx, then S has the value
1
{a) -1/3 (b} 1/4
{c) 12 (dh 1
[EE, GATE-2005, 1 mark]
Salution: (c)
"y dx ﬁ]'__; __[1_1 o,
E—L:rcd:{_[_21 [E‘:-:?]?_ =~5|=3
il
(1= lan x)
.95 j'; (e 1an %) dx evaluates to
{a) @ (b} 1
(e} In2 {dl 1/2in2
[CS, GATE-2009, 2 marks]
Solution: (d)
Meathod 1:
. 1] 1=lanx
e an(3-x) = Toanx

4

LT 1
: i i h11 = =l
the required integral is i tm[ —:]ﬂx = InV2 = > In?

Mathod 2:

Since,

Since,

¢

Scannea By CamScanner

A i
[Sixyax = ["ta - x)ox
1—lan{IE—Kde
I I-J-H—tan:m: =IH.'-1 4
0 1+tanx D 1+mn[x—x]
4
gy lanA-tanB
1an (A-8) = T a0 A tanB
= "
30 _lﬂuﬁ; —E_E_ﬂ_h'.-
n
14 f@an--Enx
| = IIH‘ = 4 dx
o 3
tan— —tanx
14| — “-:-1
1 e |
| a|~|:a|-|14 am{_
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1_[1—tanx
= j'il'4_|+ anx
i

L L+ 1ans) — (1- tany
) 1—tanx]| © ~ Jo (1+1anx)+(1-tany: o
& +lanx)+(1 -134"”.[:' A

T+ 1anx

_ e 2lanx B4
= .[:. 5 dx = [u tanx dx

[‘mg[sac J(]-EH = In[secg] - In{sec 0)

IN{2) = In(1) = In (2'3y_ g

1
EIHE

Q.96 Given | J= i
Given j= J5 . whal will D& the evaluation of the definite integral _[HEM
0

Tl X
{a} . L‘.'EtEH—IEInx
c) - EE: |E
—— [CS, GATE-2011, 2 marky)

b T i
[CG‘EI+ISII"IH =l2
——.___d:.:

-]
3 COS X — i8N —in

o€ 0

ﬂ ?_ 1 ,E,II'. a L i

— *E[ ¢ ] = E[—1~1]{5|n:ee“ =)
-2 -1

m —'EfEi

2t |
2.103 Methodsof Integration

There are various mathods of integration

known standard integrals. There are

1. Integration by substitution: A
oneof fundamental integrals.

2
di = ‘I'Ei'm dx

by which we can reduce the given
four principal methods of integration

change in the variable of integration often reduces an integral o

integral 1o one of the

Let| = If[n}dx. then by differentiation w.r.to x wa have £ o fi=). Now put
ox ] '

x = #(1), sothat = = ¢'(t)
al
dl  dl dx
Thian, T a @ -0 = el o) for x = eq)
This gives L= [tiect)- o

oldlirieu py cdlinscaliiel
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Aule to Remember:
Toevaluate I Flx) - 47 (=) cix
Pt o) =t
and pixidx = di
where ¢'(x) is the differential coefficient of ¢(x) with respect 1o x.
Thrae Forms of Integrals:

F{x)
(&) ﬁdx = log fix)
Put {x) = | differentiating we get 17x) - dx = di
f(x dt
3 _{%dx:jT:mnhlugﬂx}

Thus the integral of a fraction whose numerator is the exact dertvative of its denominatar is
aqual 1o the logarithmic of ils denominator, -
Example:

L i)

——— 4
[ ox = logl1+x)
r

dt

Because, if we put (1 + x%)
Ax? dy

[ |

=

dt
(i) reduces to = | T =»log t=logl1 + %),

Some Important Formulae Based on the Above Form:
Jl E-Il'lxd —j l.'_—Elr'I:{}dx

(il [tenxdx = [——ax=-[ "2
= -log cos x
= log{cosx)
= logsecx

] [eot xdx = log sin x

(il fsa:.x = log (sec x + tan x)

X
fiv) feosecx = log [ tan E]

+1
Z if the | ists of the product of a canstant
(b) fll[x]-" Fix)dx = [_ff{FnT_ﬂ when n = 1; If the intagrand consists of the produ

fix) and the darivative £'{x) of i{x), o obtain the integral wa increase the

power of a functon ; e
index by unity and then divida by increased index. This is known as power formula.
Formulaa:
f{ax + b)
(1) If"[ax +byx = —
; 1 _ -1 E = 2 + ai‘
{ii) I — dx = sinh (a] 'Dﬂ[x+1.|'x ]
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________jfs'r
dx ® h
o —— i L} i
{iin) j T &in [a]
dx % —
(v) [ o= = con (%) =toa[ea J& 2]
: 2
(v) J x +a° dx ;Jr:?+a? + —-.-i1r1r:‘[!]
X CF -3 X 3
or - X +a 1-—'bg{:l-+q|?+ﬁ}
—— 2
i TR O
1 jEI X° dx E.‘Ira]:£+25m‘EI

2. Integral of the product of twa functions

Integration by parts: Let u and v ba twa functions of x, Then we have from dilfarential cale,,, "
£, (uv) i =
dx e

o %, we have

.l”
Integrating both sides af ( 1) with respect

dy du
Lr'..l=Iu ﬂ—xd!+Jb.-' E:I:h!
- ju%dx - uu—lu-% el

e J'uu:l'u' = uy - _['-.r-du

This can also be written as [ uvax = u [ vl - J’[du_[ vidx]clx

The cholce of which function will be u and which function will he dy is VErY imponant in schving by
Integration by parts.

Thea ILATE method helps to decide this,

ILATE stands for

I: Inverse trigonometric functicns (sin-'x. cos ' x eic)
L : Logarithmic lunctions {log %, In x els. )

A © Algebraic functions (%2, x* + %2 + 2, etc )

T : Trigonometric functions (sinx, cos « etc.)

E : Exponential function (g%, a* ele.)

whichever of the two functions comes first in ILATE, get designated as u and ather funation QEts
designated as dv,

Formulae Based Upon Above Meathod:

(a) Ja”‘ sin bx dx =

a™ ,
(a sin bx - b cos bx
a° b’ !

() f&“mbxdx- -2 (8 cos bx + b sin bx)
a? +b?
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integration by Partial Fractions:

() | .=

X —ag°

J‘Fl—a-;dxa

Calculus

m

[t

2 a8

—eee

1 L 1
(% —alx+a) = [:—a_x+5]
[I_-_ x+a}

'ilﬂmx a) - lﬂg:_!{+.ﬂ.:|]-—‘ng_a

. X+
T IHT—-?GI'= é'w:—;—: X>a

b} I = IE'I—‘..dx[xca]
Inthssﬂaaa]'— L d“=“_|¢'ﬂa+x.x=;a

:l:

The following is a summary of some of the Irtegrals derived so far by using the three methods of

irtegration.

(a) jaz ——d = &[ﬂﬂ“'{%]

1 1 B+ X
b gy = —
”!a’- 2a -

1 1 -3
O frlroe - v

i+ 3
1
1 dx =5inh‘( ]—1.5.9 ;.;? H
iy X

xf ~a®
(g} ] LY lm:-'[.’i]
S a
- 2 f
(h) jg'a?-rxzd:. =2 en® o *E!'—airlﬁ'I| E]
b a2 B
2 -
[ T w B gini! E]
0 J- 3 o 2 * 2 v
A fow olher usaful integration formulae
™ 1 rT'1+1
nl? = e
(&) J'sm”‘x-:us"hdx - 2 J £
G Er[“"*f_‘!fg]
Z
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—
whera I'{x] is called the gamma function which satisfies the following propertias
Min+1) = nfn
Mn+1) =l ifn s a posiive it
M = 1 B0er
1
r(3) - v
(b) Walle's formula
€2 22 i & oo P Lo E.W‘l‘lEl‘lF‘-iSD{IEI
|8 x = [ cos"x = o
: ! (-1n-3)(n-5 3 1=x .
s IR vl s Byveny

ILLUSTRATIVE EXAMPLES FROM GATE

Q.97 Which of the following imegrals is unboundad 7

mid -
(a) tanx dx o) _#_1 dix
'! Jn-x +1
e 1
-x i
fe) ! xe ™" dx () jﬁux [ME, GATE-2008, 2 marks]
d1=
Solution: (d)
Choice (a) ] tank dx = log2
a
Cheice (b) E—?—“" i
Choice (c) !x 8 *dx
Integraling by pans. lakingu = x and dv = e * dx we get du = dx and v = -
S0, PHH'UH-H{-'E“]'—J"'E"I:II=—."IE'—E‘=—Q"|:.:-;+'|]
ew I‘x e'dy = [+ 1) =1
Q

1
Chaice (d) ‘{Ld;
8 1-%

MD-IN1=-w=0= =8

Since, onty (d) 1s unbounded, (d) is the answer,

Q.98 The value of the integral 11—':”“-:,- is
i

{a) -n (b) ~mf2
(c) m2 (d) =

[ME, GATE-2010, 1 markl

B
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golution: (d)

n

(357 = ol

tan () - tan (=) =

{1

ral=E

|
Q.99 The value of the quantity P, where P = JRE"EI}L is equal to
o

a) O ®) 1
(c} & (d) e
[EE, GATE-2010, 1 mark]
golution: (b)
|
P e _f:-: e dx dx
]
Integrating by parts:
Le U = X,
v = 8*dy
du = dx,

Vo= Ie*dx-a*
Iumf = w—fvdu
_[:ta“d: = yet- [8"dx
= 38 -8"4C
j! e dx = [xe* -l
[‘J.e'—e"]—[ﬂ.a”-a"}—ﬂ-i—ﬂ

# 1

&% The Mmaximism value of the funcon in the interval (0, =) I8

0.100 Let fx)=x*
(&) E"J (b) &
(e y P |:l:|:| 14+8&!
[EE, GATE-2014 : 1 Mark, Sat-1]

Solution : (&) _
flx) = xe™
Flx) = -E'“-HE"FU

E.l'.[1 T .h:} = @ :
= sa Whi ot belang 1o the given interval)

i ' & w () ONly When x = which dogs n .

" el IS eck whether At x =1, wa have a maximum. Minimurm ar gacdie poent.

pix) = " =% - w7 = 2g*+ xet =g (x-2)
1] = -8 Twhichis <0
aximum.
1) = 1et=¢"

MNow, we need 1o ch

spatx = 1, we haved m
The maximum value 5
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0.101 Minimum of the raal valusd function i{x) = (x 17 occurs ol x er il o

P () 0
:c':l 1 |:‘|1} -y
[EE, GATE 2014 - 1 Mark, gy,
Solution : (c)

) = fu- TR = (1Y

As f{x) is square of ¥y _ 1 honce its minimum value be O where al x-

0.102 The minimum value of the funclion {x) = x* - 3x" 2 4 100U theintorval |52
(a) 20 by 28
¢} 16 ) 3  [EE, GATE-2014 : 2 Marks, Sot-2)
Solution : (b)
f{x) = »'- 3" - 24x + 100

we |- 3,3)
'[x) = 3x" - G- 24

ffix) = 0 Glx=4-2
Critical points are |-3, -2, 3)
H-3) = 27-27+ 72+ 100=118
I{-2) 8- 12+ 48 + 100 = 128
K3) = 27 -27- 72+ 100 =28
Hence {(x) has minimum value al x = 3 whichis 28

Q.103 For 051 < e, the maximum value of the lunclion I{t) = e ' - 2e " ocours al

(a) t=log,4 (b} t=log, 2
(€) t=0 () 1=log 8
[EC, GATE-2014 : 1 Mark, Set-2|
Solution : (a)
) = e!l-2a™
Fit} = &' + a7
Far maximum value F{t) = 0
ity = 0=-a'4 4
—n 4g @ = g
48 = 1
I = I.l::-gull
Q.104 The maximum value of the function i{x) = In{1 + ) -x{wherex=-Noccuratx=
EC, GATE-2014 : 1 k, Set-3
Solution : { = e |
Flx) = 1 -1=0
T4 x
1=1-%
1+x =D
al
1+ x st
X =0
) - ]
{1+ %)y
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o) = -
f(x) have maximum valye gt y 3= . 1<0
H:D:l = "I-El“ +0)=0=0
fm = u

.105 The maximum value of
fix) =2;-:3_9x?+ 12“_Ei“tmim9ﬁ'ﬂ|ﬂ$xgaig
Solution : [EC, GATE-2014 : 2 Marks, Set-3]

Flx) = B2 18x 4 12

fix) = 0
Bu? - 18x & 12 = 0
= e 2=0

X= 102
Hence critical points are {0, 1. 2 2.}

f{x) attains its maximum valus at one of these points,

o) = -3
1) = 2
f2) = 1
fi3) =86

1 1 2
Q.10 If for nen-zero x, af{.ﬂwl‘l}] = — =25 where a = b then [f(x)ax is
]

T

1 47b 1
o g |an2-29+ ® |29~ 77|

(c) ﬁ[.ﬂﬂfﬂ? - 25) + i;:b-]

47h

(d] ?-—Ir!;r[a:{.fnz = Bt
[CS, GATE-2015 : 2 Marks, Set-3]
Solution: (a)

af[:}+nf[1] = %—25 {1}

x
¥
Put x = — in equation (1)

ar[ﬂmf{ﬂ -x-25 2
Equation (1) »x a — equation (2) = b

o
Nxa:= aEF(1}+DEiP,]’ - ;_253
X

{E}xb:=aﬂf/m+bzf{x} = bx - 250

#ilx)~bf(x) =~ 258 - bx + 250
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{a? b5l . .{_lr:lnﬂ——bhi-.gfl[bl a)

i) _1_,__[_—b_:.+?5{t' 'H:I:l
& A5 = 1

2 Ej y— b # x4 250 = E'J‘ﬁ n‘l
= Jftx)-ds = _5-1;-*’1 '!x J.-

[EH’TE - ED + 2500 - EII]

47h
[a.‘n? EE:-EH— ]

‘_._
b.E

i
'==:.~|

i [a:mE EE':I'—'—]
a —

':ﬁa

211 DEFINITEINTEGRALS
if Jnﬂ.;}dx = [Flq)P, = Fib) - Fia) i called the definite integral of {{x) Datween the kil of & and b,
by — Lpper fimil; @ —» kower limil.

211.1 Fundamental Properties of Definite Integrals

1. Wehave j “fixidx = ! I’1it]|:|: L., the value of a definite integral does not change with the change
i El a
ol variable of inteqration provided the limils of integration remain the same.
Let [tixydx = Fix)and [ty = Fit)

Now [“txyox = [FxJ®, = F(b) - Fa)
[ ftyeit = [F(°, = Flb) - Fia)

2. _[:'f[:!ldl: = —_[: fix)dt. Interchanging the limils of a definite integral does not change in [he
absolute value but change the sign of infegrals.
3. Wahave J:ﬂ[ﬂ]d: = j:l'[r.]tﬂx ¥ f:f[x]dx

Mota 1: This progedty also holds rue avan if the point ¢ s exteror o the interval (a, B}
Mote 2: In place of one additional point ¢, we can take sevaral points. Thus several points.

Thus, J.:!t_x]dx o J:'i{xbdx ' _E'f[x]ct: + j:'l{:r;}:];u; L LI_J =)=
4, (&) Wehave f:l{x:m = EI{a+b—xJ¢]x
b) Wehave [ioadx = [Hta - xd
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Proof: Lat
Pul =8 =1=dx =

I = [iitxax
—dt'ﬁ'hﬂrf:x:!]ltq ElEIndHhEnx:&J =0
il _ (o & El
= [a-00dn = [fa -yt = [ #ta ~ xpax
3
L! fixpdx=Dor2 Ef{’f}'ﬂ“ According as fix) is an odd or even function of x.

Odd and Even function
{a) An odd funclion of x If 1(-x) = -f{x)
(b} Aneven function of x if f (<x) = fix).

o

2
G Iu Eﬂ:;.;jdx = 2 j:f{n}dx. if {22 - x) = f{x)
and [fdx = 0. ifH2ax) = - fx)
Corollary: E"f[:-:]-d:-: = E{{;:;]d:; + f:f{gg — x)ox
fijg a
7 [txhex = nftx) cx
(1] &]
il (=) = fi{x + a) [periodic functicn with panod a)
fl
3 2 T = 040 ¥ -o0] ()
#ii
ILLUSTRATIVE EXAMPLES
Example: 1
Evaluata the following definite infegrals:
A
@ [hx+2x (o) J(xl+ xS
%5 i
Solution:
(a) Sincefor-5sxs-2,x+2350
- e+ 2 = ~x+2)
and for-2sx <5 x+220
= s =x+ 2,
5 2 B
[Ix+21dx = J b+ 2la+ [ e+ 2Aax (Praperty 3)
% -5 =

I 5 : r [:'tE T;
" 3 Pl =) ———2 #| =+ 2x
_'[5 o :[2{“- ] [ 2 i 5 2 2

= [—-E+4}-[—%5+1D]+[§+Iﬂ]—{2-—-1.]:29_
(b) Sincefor 1sx$3 x20,x-3<0=3=xk-F=-(x-3)
Aeofor3<x<d, x<h x=-320=pl=xx -3f=x-3.

EraM =
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—
q i
i bt - 3f)x
j1{|;q+4p 3jx = !{|x| +|x-3)dx + !njq +x-3) Propan
1 4
o ﬂu—:x -E}]dn+j[x-l x —3)dx
1 ?
q 4
- IEdmj[Ex—der
1 3
jll:i-.’
- EEH]? +[2 ] -3!‘:
= 3[3-1)+(16-12)-(8-9)
= 16+4-0=10
Example: 2
Evaluate the following cefinite integrals:
t 2x+1 x <1 e 11 1
= —dx 3 |dx
(a) !rf{::u:-e whera '{”'Lrﬁ. oy B ;i,:: (e) JD'T |
Solution:
{a) First note that the given function is discontinuous at x = 1.
| 1 )
[fixhax =[x+ [i(x)ax (Property3)

‘il (2% +1)dx + il{?’. - 5)dx

[:I::E -Hv:]1 +]:i—5ﬂ.l-a
= E .

(1+1)-(1-1)+(2-10)- (--5}= —:.':-EI+§=_E

H

{b) First note that ig discontinuous atx = 0,

JUC"‘ = j' dx+j| |d:: dx+j—dx
_1 _l|
ﬂ.'-1$:¢£ﬂ=:-|xl——xanﬂﬂ-£x£1-_-'-|J:|=Iﬂ

i-*rdn: +J11-|:I!|'. =[—:-:]'f',|+[:.\|:];;I
i

“0-{-MM+(1-0j=-1+1=0.

1 2
) First note that [3x] is discontinuous at X=— and ¥ = —,
) 3 3

]I[ax] de - T[a:}un+2§’3|3xj:1x+j[3x]m
0 o Va 23
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3l 23 1

- jﬂd:-:* _[ 1-:!x+j2d:=ﬂ+[1]!.,§+311112r3
i) 3 213
2 1] 2 1 2

= Tz ¥ ==z =5Z=
[3 3 [ 3] ata!

Example: 3

By using properties of definite intagral, evaluate the foliowing:
ni2 N2 an
(a) j sintxdx (b I x* sin® x dx (c) Ilq_‘,:ng ®|dx
-2 L 0
Solution:
(a) Let f(x) = sin x = fi-x) = sinY(—x) = (~zin x4 = sin?x = fx)
o2

e xi? 2
= jf‘i"*”j’* - Ejaln*xd.x:g}‘[1-ﬂﬂ52ﬁ]m
nf2 3 D 2
1I.|-E
" ‘-H‘l—EmsEIwns‘En].m
2%
w2
" lj‘[-,_zmghhcnadx]dx
2 3 2
g2
= 3 j (3—4cos2x + cosdx)dx
D

; 2
i 5 2% SII‘MH:];
= E[ﬂ‘.l:-d-_ 5 + 2
i X : 1., ]_[ ~ 4 n
=||d== —BiNZx 0 -2sin0+ —snd
- 4[[32 25|r11:+45| -

- :;:[[%E—ﬂ + u]-{n-{: +n}] =53’£

(b) Let fix) = x* sin® x = f(-x) = {~x)? sin*{-x] = — gir x = =f{x)
— f(x) is an odd funchion; therelore, by property 5,

w4
I ISEiI’IaFﬂF = 0
et 7

B,
[c) Letf(x) = |cos = f{2n — x) = [cos (2r - )| = jcos 4 = f(x), therefore, Dy proparty

i f )
[ Jcosxjdx = 2[|cosx|dx
: : oy property B,

Again, f{m = x} = |cos (=~ ¥)| = |Fcos x} = jcos H = fix), tnerefore, Dy Br
# (T4 e
[lcosx|dx = 2 g |cos x|dx
0
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+ Fromi (i) and (i), we get

Ix 2x niz
[cosxdx = 2.2 [[cosx|dx =4 [ cosxdx
0 a i
]
(" for0€x= E‘msﬂﬂ:ﬂm‘“hm”
m'd . K .
= =4 o Ol=4{1=- =
4|sinx], [smg sln] {(1-0) =4,
Exampla: 4
% ginx
Evaluate the following | —————dx -
) SiNX+cosx
Solution:
] i
Let I j : S
4 SiNX+ 008X o i)
Then, by using property 4b, we get
a2 Ein[g—x] i
: COsX
f B ‘[ I n o = —— (1]}
bl $in[-2ug]+cm[i_x] | COSX +5Sine

On adding (i) and (i}, wa gat

SiNX + COSX L
—dx

nle
= - e =[x =B _g=F
2l !mnx+m:5:.; ! [ a U o
== | = :-—

Exampla: 5
Evaluate the following definite intagrals:

i
1
(&) !!ng{ e 1]1:::
me
By | sin2x logitanx)dx

Solution:

1 1
(@) Lat 1= oo 3-1)ax = oo = e 0
o X a A
Then, by using property 4b, we gat
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= -

= 2l = 0

> l=a 0

=7
(o) Let b= [ sin2x log(tanx)dx )

{

Then, by using property 4b. we get

n
Lat Vs M[E(g - :]]Ing[mn[f - x]]u:b:
1] 2
g w2 :
- [ sin(z-2x)iog(catx)dx = [ sin2x logf{tanx)"'|dx
] 1]
L =z
= | sin 2x(~1jlog(tanx)dx = [ sin2x logitanx)dx
0 0
gt fusing (i)]
- 2l =0
= =0
Example: &
Evaluate the following definite integrats Ilng[1+::|:|sr.]| s H
o
Solution:
| = _IFIn-g{H cosx)dx w0
L]
Then, by using property 4b, we get
P Ilug (1+cos(x—x))dx = [log(1-cosx)dx - i
]

On adding (i) and (i), we gat
2l

o ey A My,

(log(1+cosx)+ log(1-cosx))dx = _Ehg[i— cos® x)dx

Ing{sin? :«::]dx = Ejln-g sinx dx
.D "

n
= E-I-I.H:-Ebl
g | ihﬂ

Let ffx) = log sin x = f(x— ¥} = log (sin (- X)) = log sin x= i(x), therefore, by using proparty
6, we get

w2
| = z_|' log sinx dx -——E.{—%lﬂﬂﬂ] = - log 2.
o
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ILLUSTRATIVE EXAMPLES FROM GATE

N 'u:{
Q.107 What is the velue of the definite integral, ax 9
8 ! Jx +Ja-x

{s) O {b) af2
¢} a {(d) 2a [CE. GATE-2011
Solution: (b) + € Matkg)
Lat | = J-,-_* -h—‘,:-lj}l'
WX 4 A o |
i i
Since Jfixhde = [fla-xjox
5] fi
- [_va-x d
l-..'a—:-:+-..|'x g i
i
(i) + (i) = A n fREIACK
VR +Aa-x
= 2= If-d::
]
- 2 =a
=5 - 'BE'
nlh
Q.108 The value of I cos” 30 sin 66 di is
]
(a) O i
T
fc) 1 B
(d) 5
[CE, GATE-2013
Solution: (b) (& Merd
Let 30 =t
S X O8 = dt
8
. O = 3
B =%
B = g = 2
B =0 t=0

_ =2 R | 1 pmi2
| = fﬂ COs" [-8n° 2 3" EI: 1:|:-ra“'r-{Esinh.:-:rcs'r]ll-'l:Iat

A eriz
. Ay oi B pmip
E‘L cos’t-sin" 1. cog’ tat - EJ'J cos’ tsin 1dt

e E[__ﬂ'_“.'ﬂ ;.
3|1066.42|" 15
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g.108 | fix) is an even funclion and a is a positive redl numkber, then _[a fix)dx equals
@3 b) a =
‘.ﬂ] 28 (d) E‘Effgjm
[ME, GATE-2011, 1 marks]
golution: (d)

Il fix) is even function then

[(dx _ 2frix)an
A !

0,110 The value of the definite integral j:' Jxin(x)dx is

4 2 2 4
@ gV g ) 2 -3
2 5 4 4 a
0 g% +5 @ 5V -3
[ME, GATE-2013, 2 Marks]
Salution: {c)

n
o l-ﬂ fnx dx
1

u=idnx ; dv = %o

(]

i iT

g 2

fl.H:I'.r = U= l'.'du
x-ﬂl'? - .:l;_:”f 1_|:|;|:
[n'r'l.:'r.glr.E 1 'Ill TR

q 2 az 2
E' 13 E iz = _Ea' =
_ [_,_g. _1]]_5_1[1 dx = 3 3

a
Ia‘nn-u";ﬂx
T

3
. ; 2 4
4 f_aa.lﬁ_g_md-f? ~f) = E&m t2
2 (e—1Psinlx=1 4 "
Q.111 The value of the inagral gix— +cosix—1
{b) O
(@) 3 d -2
= [ME, GATE-2014 : 1 Mark, Set-1]
Solutien : (b)

i (e-Wsinlx=1 4
= -1 +cos(==1
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Takingr—1=2z = dr=dz
forx=0z—s-1andx=2,z2=1

.'[ #* ginz
22 + EDEI
z° ginz
et Hz) 2° +cosz
z% 5inz
H-2) = z® +cosz
fiz) = -1{z) function is OOD.
I =0

Q.112 1 jnh!|151n1|ch = kx , then the value of k is equal o

[CS, GATE-2014 : 1 Mark, Set-3]

Solution :
e 4
- jll.rEil'l.xld--' = Kp
o
22
” |Issm1ux+ [lssinsldx -
- f:sinx dr+ j ~(xsinxlds . kp
i} E
= [—:sinnslnx}l,; ~(—zsinz+ Elil'l-.t:lr: = Kp
= 4p = Kp
= K=4
Q.113 The valua of the integral givan balow is
j;.lz COGxdyx
() —2n b =
c) -= (d} 2n

[CS, GATE-2014 : 2 Marks, Sat-3]
Solution : (a)

[rfeosxde _ 2 (shnx) - 2x (~cosx) + 2-sina)], =220+ Zni-1)-0=-2x
i)

1
dx
@114 The inkegral is equal to
integ IDT-“_;} q

[EC, 2016 : 1 Mark, Set-3]
Solution:

14 S| 1
dx _ -2 dx . 2(—xk = )=
!,:"‘E i gm * 2 23k = 2(0-1)=2

—
Scanned by CamScanner




MADE EASY Calculus | 185

=5iNx ;
Q.11 Thwaluauf_[u *I;,ﬂ'1+j - ds is
"
o
ich 2 {dy 1
[CE, 2016 : 2 Marks, Set-1]
aplution: (b)
-
P e -1 - 1. _tar-los
Ig1+xz " [tﬂﬂ r]:_tan tan™' 0 2
1
Ligi =
ard igin x) =
sin - .
=3 L[Tx] = L 5?1” dx {Using “division by x°)
- [tan'1EI = fan " = - tan '{s} n.:;gt"{s}
- - F 1 g-n't _1 = b i
- _Fﬂ 8 ——dx = cot”' [g) {Using definition of Laplace transfom)
X
= ginx Y R
Put 5 =0, we get j,:, g dx = cot “{D}:E

1 = 5iNx
dx+ | ——Ox=%
1+1° 0 x

2.12 APPLICATIONS OF INTEGRATION
We siudy three areas where integration is applied
1. Areasof curves

2. Length of curves
3. Volumeas of revolution

2.12.1 Preliminary : CurveTracing
In order 1o find area under curves, as well as for evaluating deuble and triple integrais, i is used o

know how 10 race some comman curves from their equations.

Circla : Cartasian Form: .
1. »® + % = a? : Circle with centre (0, 0) and radius a.

(0, a}

(=8, 0} ‘.‘& D:I

(0, —aj

e i R LY .
=

UL Lly el ovaltiilivi
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2. [x=h} + (y -k} = a: Circle with cenire (h, k} and radius a.

Folar Form:
1. r=a:Circle with cenire (0, 0) and radius a.

2 re=asing : Circla with centre (CI. E] and radius 2,

2 2
@

(o, o

3
3. r=a cos B: Circle with centre [%.C' and radius g :

e, "\
Farabola:

1. %= day: Parabola with vertex at (0, 0) and focus a1 (0, &) and latus rectum = 4a.

da
{0, &) ;

(0 O

(0, 0}

(0, =a) 1
LE]

alnicu vy vaiiliouvalliicel

2, w! = —4ay : Parabola with veriex at (0, 0} and focus at (0, -a) and latus rectim = 4a.
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o

3, ¢ = d4ax - Parabola with vertex at (0, 0} and focus at {a, 0) and latus recturmn = 4a.

da

m-_awi

4, y?=-4dax Parabola with vertex at (0, 0) and focus at (-a. 0) and latus recium = 4a,

(=2 0) 800

5. (x-h)? = 4aly - k) : Parabola with contre a1 (h, k) focus at (D + h, a + k) and latus rectum = 4a,

|
|

(h, k)

Ellipse:

x?

I i
a

S

=1 ; Ellipse with centre at {0, 0) and major axis = 2a and minor axis = 2b.

(0, B}

-
P

{0, k)

£ _ =
g L=hF Uy ;'i]'? =1 : Elipse with centre at (h, k) and major axis = 2a and minor axis = 2b.
b

HE

h‘-__
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Hyparbola:

2 ]
S
. 7~ Eﬁ = 1: Hyperbola with vertex al (a, 0) and (-a, 0) and centre at (0, 0),

-z, 00} (@ 0 \(a,0)

AN

2
X
2 5- - — = 1: Hyperbala with veriex at (0, b) and (0, -b) and centre al (0, 0).

EI:
\\___ {0, b}

{0, 0}

<

/_,——'—‘

2.12.2 Areasof Cartesian Curves
Theorem: Area bounded by the curve ¥ = fix), the x-axls and the ordinates x =a, x = b ig

j:':.rd:-: . J':rf:-:}d:-:

Y& ¥ = Wx)

) ) K=a ¥eb
2. Interchanging x and y in the atove formula, we see that the araa bounded by the curve x = fiy)

{0} ~by)

/

1!

i 1+ »
the x-axis and the abscissaey = a,y=b i3 L xdy = |:1:1,-j|:h,- as shown in figure below,
¥
=== = 1]

=1y

e

o *
Note. 1 : The area bounded by a curve, the x-axis and two ordinates is called the grea under
the curve. The process of linding tha area of plane curves s often called quadrature.

Scanned by CamScanner
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Mote. 2: Sign of an &rea. an area whosa boundary is described in the anti-clockwise direction

(i. lies above x-axis) s considered positive (Fig. a) and an area whose boundary is described
in the clockwise direction (i.e. lies beiow x-axis) is laken as negative (Fig. b).

Y o 4 Wk
B G

A 7| o
5 T Tl =» B
WY =va = % Rmg J:‘ ey ] vl
= pea | are

- 5 i - i) C £

B c 0 kwec) 'E X
{a) L i ? ]
O arada K= b
{3

A fc]

In Fig. {c) above, the area given by f:y dx will not consist af the sum of the area ABC {=j:3r d#]

and the area COE [: -F:':,r d:..-} but their difference.

Thus to find the total area in such cases the numerical value of the area of each portion must be
avaluated separately by taking modulus and their resulis added afterwards,

ILLUSTRATIVE EXAMPLES
Example:
Fird the area of ihe segment cut off from the parabola x® = By by the lina x- 2y + B =0.
Solution:
Given parabola is X" = By e (1)
and the straight lire iz
X-2y+B =10
x+8 "
= y =g oo (i)
Substituting the value of y from (i) in (i), we get
¥ = 4(x + 8l
or -4y =32 =D
or (x-B)(x+4) =D
¥ =B, —4

Thus (i) and (i) intersect at P and CQwherex=8andx=-4
. Required area POQ (i.e. dotted area) = [area bounded by
gt line (li) and x-axisfromx = —410% = 8]~ [arsa bounded by

parabola (i) and x-axis from x = - 4tox = B]
= [° yox from (i)~ [, ya. from )

8 x+8 e x® 1 _1#‘3|
4Td:~:- _‘—E-d:n—zi?+ﬂx[‘ Ela

1 1 -
-E—{{az + B} —(-24)} - 5{51 2+64) = 36,

%’DMI nmicwu Ll‘y Al Ivwuvaldiiivl
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2.12.3 Areas of Polar Curves
Theorem: Area bounded by the curve r = [{8) and the radii vectors 0 =@, B = fis

%I:rzl:iﬂ

ILLUSTRATIVEEXAMPLES

Exampla:
Find 1he area common o the circlesr= 502 andr=2acos 8.
Solution:
The equaticns of the circles are
[ = a-uré and i)
I = Zacosh i
(i) represenis acircle with centre at (D, 0) and radius a+2 .

(i) represents a circle symmetrical about OX, with centre at (a, 0) and radius a.
The circles are shown in Fig. befow. At their point of intersection P, eliminating r from (i) and (i,

1
a2 =Pacosfig.cosde 7

or B = nfd
Required area = 2 x area OAPQ (by symmetry)
= Mareda OAP + area OPD)

- 2[% J;'”rzda.f-::.r |;I}+%I:E rda, for {il'j]
= [}(av2) 00+ ¥ 2a cose?de

= 2afJf + daEI:: 300820 1

2
& (F
= 28°(x/4-0)+2a2(p4 3020
ard
_ 1 oafn x
2 2-1°3 | =F&-1)
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2,124 Derivative of arc Length §
Theorem: For the curve v = f(x), we have

% . yli*[%}]zl

proof: Let Pix. y), Q{x + &x, y + &) be two neighbouring points on the curve AB (Figure below). Lel

arc AP = 5, arc PO = 8.
pDraw PL, QM Ls on the x-axis and PN L OM,
. From the . triangle PHC).

PO* = PN2+ NG
&7 = Bt + By

i.2

e )

5T o LN
Taking limits as Q — P (i.e. 8¢ —+0),

(&

I 5 increases with x as in Figure above, dy/dx is positive

(] [smca, 1, 2|

[ 2
e oy i itive sign before the radical ... (i)
Thus ke 1+[dx] ].tukmgpnmsmn ore {

Cor. 1. If the equation of the curve is x = f{y). then

Cor. 2. If the equation of the curve isin parametric form x =1}, y = (1), than

dy ] |.9x de 1 fdy dx
N CIER BE
r dx | | ot dt ) |dx ot

ot

s 272

Scdalirnea py calroscariner

o (i)

B (1]}
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2.12.5 Lengthsof Curves

Theorem: The length of the arc of the curve y = 1 (x) between the points where x = a ang ,, _ bi

e

Tha length of the arc of the curve x = l{y) baetween the points wherey = aandy = b_js

5T

Tha length of the arc of the curve x = (1), y = (1) betwaen the paints where t = 3 and | = b, ig

NEECIE

Tha length of the arc of the curve r = f(8). between the poinis whereB=aand 8 = j, is

Bl () o

ILLUSTRATIVE EXAMPLES
Exampla:
Find the length of the are of the parabola x* = 4ay measured from the venex 1o one extrematy
ol the Elus-recium,
Solution:
Lel A be the vertex and L an extremity of the latus-rectum so that al A, k=0 and all x = 2,
as shown infigure.
Y ok
L 5t &4
A X
Mow, y = x<Mda
dy 1 b
— Ty ?I — R
50 thai e i 7a

2
' ST ey S ES
_j“,jm - = _JE.._.F"'_I [EEF [28) innt HL

._"_lz_\[:.a ()’ +28% sinh™ 1]
2a

2

a[ V2 +sinn1] = a2 +log(1+42) ] 1 sinh-"x = loglx + {1+ =’J]

R |
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2.12.6 Volumes of Revolution
1. Revolution about x-axig: Tha volume of the solid generalied by the revolution about ihe x-axis,

gl the area boundad by the curve y = fi(x), 1he x-axis and the ordinates x = 8, x=Dh s !:nfdx_
Lat AB to the curve y = fix) between the ordinates LA (x = a) and MB (x = b},

ILLUSTRATIVE EXAMPLES
Example:
Find the volume of a sphera of radius a.
Solution:

Let the sphare be ganarated by the revolution of the sami-
circle ABC, of radius a about its diameter A, (Figura)

Taking CA as the x-axis and its mid-point O as the origin, the
eguation of the circle ABC s

ey =g
Violume of the sphere = 2 {volume of the solid generated by the revalution
about x-axis of the quadrant OAB)
= Ef:m,r?l:b: - Enj:{a’—:?}m
% 3 4
T T e 3.__&__ 1 -t 3
= 2m@"x 3[_21:;3 3 0 I:II]‘ 3™

y in the above tormula, we see that the

2. Revolution about the y-axis. Interchanging x and
y-axis, of the area, pounded by the curve

volume of the solid generated by the revolution, aDoul
3 5]
x = f{y), the y-axis and the abecissaay =8,y =bis|_ wxdy .
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ILLUSTRATIVE EXAMPLES

Exampie:
Eind the volume of the reel-shaped solid formed by the revolution about the y-axje, af the "
of the parabola y2 = 4ax cut off by tha latus-rectum.

Solution:
Given parabola is x = y*/da.
Let A be the vertex and L one exiremity of the latus-rectum. For the arc AL, y varies from g

2a (Figure)

Required wvalume 2 (volume generated by the revolution about the y-axis of

the area ALC)
2a by 8 Y&
= 2wy = 20, 1Ea3ﬂf=m2[?[ﬂ
_ | & = 4!&3
b ] EI{EEE —D} = 5

ILLUSTRATIVE EXAMPLES FROM GATE

Q.116 What is the area common to the circles r= a and r = 28 cos @7

(a) 0.524a2 (b} 0.614a?

{c} 1.047a* (d) 1.228af [CE, GATE-2006, 2 marks]
Solution; (d)

Araa comman fo circles, [ = &

and r = Zacosf s 1.22857

Q.117 A parabolic cable is held betwean two supports at the same laval, The harizontal span between
the supports is L The sag at the mid-span is h. The equation of the parabola igy = 4h(x3HL%),
whera x is the horizontal coordinate and y is the vertical coordinate with the origin at the cenire
of the cable. The expression for the total lengih of the cable is

hﬂ'
(a) j +64 f (&) Ej 1+E4h3“?
h.!
f bt .. (d) E_[ 1+E4fﬁdx

[I:E. GATE-2010, 2 marks]
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e
golution: (d)
Length of curve y = f{x) batween x = a and x = b is given by
T -~
1+[—] d te— L (L
& d“ X I_.-____.._-r-—--II:E,h]
K.E i\\ E x
hare, ¥ = 4|'ILT e A1} [0, 0y [£ ﬂ]
5

L

dx T2
since, y=0alx=0
and Yy = halx= I;

2
(As can be seen from equation (1), L‘-‘y substituting x = 0 and x = Li2)
1
5 (Lengihofcable) = [ 1+ ) Tdﬂ J' 1+ ]
: a
Lengthof cable = 2] 1+ 64 — h x
0Q.118 The length of the curve y = %:3’2 hetwaen x =0 and x = 118§
(a) 0.27 (b) D.67
o) 1 (dy 122 [ME. GATE-2008, 2 marks]
Salution: (d)
i gxsre

ﬂ = NIH

s
length of the curve is given by

imdx = ]'J_d: =[ {1+:I’”T_;=1.Eﬂ

.118 A path AB in the form of cne quarter of a circle of unit radius is shown in tha figure, Irtegration

of (x + y)? on path AB traversed ina counter-clockwise sangs is
Y

~

B
(a) gﬂ i) %H
{e) E d 1

[ME, GATE-2009, 2 marks]
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Solution: (b)
Path AB: i
¥y = sin g
Along path AB 8 varies from 0° to 90° [0 to nf2]
=iz
[ x+yPa0) = [ (cos®+sin®) 140
Paif B b
= T(::in" 8 + cos’ 0 + 2sinf cosB)dd
0
el Y
= [ (14 sin26)de
0
_ ., (005 20) ki B
= TR
" 1[ T
| L m:s{l]
2 2 2 :
2 E"%I_1_1]= EH |
0.120 The area enclosed between the curves ¥ = dx and »* = dy is
16
& 5 (o) 8
3
&) 3 (d) 18

[ME, GATE-2008, 2 marks]
Solution: (a)

Cuvel: ¥ = 4
Curva2: x? = dy
Inlersection points of curve 1 and 2

}r: = dx = ﬁ = B\E
v = BxBy=wy'-64)=0
Solution ¥y =dandy=0
then x=4d x=10
Therefore intersection paint are A(4, 4) and 0(0, 0) = dy
The area enclosed between curves 1 and 2 are givan by

Area = Tﬁ dx - Ty, dx

1] L1
4.2
= [ = ax
4
i2 a
= E—-—KJ [‘ B e i{qfn’? {4)° 16
EJIE W) 3 d 3- 3:4 = E
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s
Aftarnately,

-
e same answer Could have basn Oblained by taking a double integral as follows:
i

f ! 2
Required Araa - ”?;xm dy = ]'[E\E_x_ X o 18
i i 4 4

0.121 Theparabolicare y= Jx 1zx<z

s Is revalved around the w-axis. The volume of the sod of

e w (b) =2

b {d) Gms2 E. GATE-2010, 1 mark
solution: {a) [ME, 2010, ]

The valume of a solid generated By revolution

: about the «-axis, of the area bounded by curve
y = I{x}, the x-axis and the ofdinates x = g, y=his

bi
Violume = Inyzd}:
a

Harg, 8 = 1.!:|='Ear1d-_.r= x =y =

Volume

[

2
ju-x-d:u:
i

[5] - 507501 -

Q.122 The area enclosed betwesn the straight line y = x and the parabala ¥o= 2

nhe x-y plane is
(@) 1/6 (B) 114
fch 113 idy 12 [ME, GATE-2012, 1 mark]
Solution: (a)

The area enclosed is shown below as shadad-
The coordinates of paint P and O is obtained by solving 't

Y = X
and ¥ = x* simulianecusiy, '3 y=x
i.a, X o= x2 P, 1)
= Xx=1) =0
= kw0 ¥wm
Now, x=0 =y=0 whichisptQ{0,0)

2D, O)
andx=1=y=1=1 whichis pt P(1, 1)

S0 required areais

] 1
2T [
2 3
Consider an ant crawling along the curve {x =27 + ¥ = 4, whare x and ¥ are in metars,

The ant starts at the point (4. 0} and maoves counter-clockwise with a speed of 1.57 maters
Per second. The time taken by the ant to reach the point (2, 2) Is (in seconds) ;

[ME, GATE-2015 : 2 Marks, Set-1]

j:ﬂx —j‘;-'.fdx
0 0

1 =
3

L f

1
2]
Q.12a
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Solution: (2)
(e—2)% + () = (2P, isacircle of radius 2mand
centre at (2, 0} |
Time to reach from (4, O} te (2, 2) s

%) 5]
1im&=Distanca_. 4 g8 = _ 2580,

Speed 157 151 187
0.124 Consider a spalial curve in three-dimensional space given in parametric form by

{00

.S
2
The length of the curve is . [ME, GATE-2015 : 2 Marks, Set.y)

Solution: (1.86)
2 2
- £"(5) (&) (&)
5= [ J{-s&nr}! +(cost) +[%]?d:

nid
4 4 ni2 4 Y x
= 1,.[ at = 1+[—] t = 1 [—][—]-1.
{ |2 'l| o o \ "NENE "
Q.125 The expression V = j:nﬁ? {1 = hiH)= dh for the volume of a cone is equal to

@) [, nR® (1-n/Hf ar

xid=cost N =snt z(h= %i. 0sts

b f:rd'-'lz (1-h/HY dh
A
) [} 2urH(1=1/R)ah () I:’"H[Fﬁ] i

[EE, GATE-2006, 2 marks
Solution: {d) ]

We considar aplions (a) and (d) only, because thess contains vanahle r. &s variable of integration.
By integrating (d), we get

1f3 = a®H, which is voluma of a eane.

Q.126 The line integral of function F =yzi, in the caunter clockwise direction, along the circle =2 +y? = 1

alz=1is
o (b} —x
) = di 5 .
Solution : (b) el [EE. 2014 : 2 Marks, Sat-1]

F o= yzi
0k
d 3 3
YuF —_—
ok dy oz
va 0 0

n

T[u}-I{c}-y}+E{n-z}=G]+yi—zﬁ
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By Stokes thaoram, I
JFaf = [(WxF) Ads [yl —2ky -k as .
C = 4
| = -['“'5 Sincaz=1
g
= [-1ds=|-18=(-n=-n
g
where 5 is surfaca area of x® 4+ v = 1
] S = ﬂ.l:‘lF:‘r[
0.127 The following plot shows a funchon y which varies linearly with x, The value of the integral
= jlvd_[ i
1
' 5
- 3
{a) 1.0 (b) 2.5
{c) 4.0 (d) 5.0 |EC, GATE-200T, 1 rark]
Soluthon: (b) | .
Equation of line with slope 1 and y - imercepiof 118,

y = x+1

| = Ff‘y'dx = E[IH]d#

Z

(R I PP

2 _Er‘ i
1

; S )
0.128 The valus of the integral of the funchon gixyl = 41:3. + 10y* along the straight line segmen
from the point (0,0) to the point {1,2) in the x-y plane is

b} 35
@ 9%  [EC GATE2008 2mark
c
Solution: {a)

Equation of straight ling from paint (0,0} to (1,2)is
(2~ I'.'I!

y-0 = {1-01{!:—'3}
¥y = 2%
B g{::ly}—_'dlsd-'lw

4y 4 10 (2x) = 4 4+ 160 x°

1
B
[ii’;iﬂﬁg“l;naz:aa

j[4x3 + IEDI‘}dx
o
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¥
Q.120 Atrangle intha xy-plane is bounded by the straight lines 2x = 3. y=0andy = 3 The v,
i

[} _3]

Solution:
¥
(0 2 - - (3, 20
£=10 2y = 3y
=3
E
- {3.0)

vome = [ [[dededy = [ [zaydx

32/3 1 5 e
= ! ! (6 -x-yldydy = ![EF‘IF'%[ dx

3[ A = a _...3
a [[apald ]d: ” [ﬂ———-—
i 0 2 9 3 A

= [Eﬁ—g[g][] =18-8=10

.130 The area between ihe parabola ¥* = 8y and the siramght ine y=Bis
[CE. 2016 : 2 Marks, Sat-11)
Solution:
Parabola is = By
I?
Y= and straight is y=0
Al the point of intersection, we have

Ead
g

=B
_'E'
= IH—E.EEI"I:H-"IEE_FI—E-
B .]'E
- Required area is L__H[E-F]ﬂ'l
™ Ej:[ﬂ—f;]d: [ H—% [1:] ﬂvanfmclim]

A 288
:Eﬂ - — = e—— : N
X 24 3 85.33 =q.units

- N
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B
,13 MULTIPLEINTEGRALS AND THEIR APPLICATIONS

1. Double integrals 2. Change of order of integration

3 Double integrals in polar co-ordinates 4. Areas enclosed by plane curves
& Triple integrals

2.13.1 Double Integrals

The definite integral ]:f{x}dx is defined as the limit of the sum

086, 4 Fe B 4 B B,

where n = == and each of the lengths §x,, &, ... tends o zero. A double integral s its counterpart
in two dimensions,

Considar a function i{x, y) of the independent variables x, y defined at each point in the finite région
R of the xy-plane. Divide R into n slementary areas 84, 8A..........8A, . Let (x,. ) be any peini withir
the rth elementary area 84 . Consider the sum

iy, B8, + t, vo)BAG + 4 Tk, y J8A, ie, Y fix, v, 1BA,

Tam]
The limit of this surn, i it exists, as the number of sub-divisicns increases indefinilely and area of
aach sub-division decreases to zero, is defined as the double integral of f{x, y) over the region R and

igwritten as [ [, {x.y)dA

i!:x,.v,}ﬁ.ﬂ, oo i)

r=|

Thus [ltinapn = U
Y
The utility of double integrals would be limited if it were required to take [brnit of sums to evaluale
them Howewver, there is another method of evaluating double integrals Dy successive single

intagrations.
For purposes of evaluation, (i) is exprassed as the repaatad integral I:' _[:f s yidady . Its value is

found as follows:

1. When y,, v, are lunctions of x and x,, x, ara constants, f{x, y) is first integrated w.r.ly (keaping
x fixed) between limits y,, ¥, and then the resulting expression is integrated w.rl. x within the
limits x,, ¥, L8.

b= 0| o)y i

whera intagrations carmied from the innar 1o the outer rectangle.

Fig. (a) below llustrates this procass. Hare AB and CO are the two curves whose equations are
y, =1,(x) and y, = fAX). F(J is a vertical strip of width dx.

Then the inner rectangle integral maans that the infegration is along one edge of the strip PO
from P to £ {x remaining constant), while the outer rectangle integral comesponds to the sliding
of the adge from AC to BD.

Thus the whole region of integration is the area ASDC.

¥ ¥
,5-"@ ¥ =% o Wﬂ
E=¥y K=y r.-ﬂhﬁﬁﬁ-w:
e i A Vewm 7° :
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ara constarts, {(x, y) Is first integrated Wt x keapiy 5
[tingg Egpr&sﬁiﬂl‘l iz inteq rated w.rt, betwesen i ﬁl‘ﬂha

2. When x,, %, ane functions of ¥ and ¥y, ¥z
v fixad, within the limits x,, ¥; 8nd the resu

¥y Vg L8

J h‘LT T'i'?’u&"'!E'_ch dy| which is geomatrically lustrated by Fig. (b) above

2 ¥

=f (y) and %, = f,{y). PQis 8 horizontal strip of widih dy,
i afion iz along one edge of this strip from Pio O whilg
this edge from AC o BD.

Here AB and CD are the curves X,
Then inner rectangle indicates that the integr
the outer rectangle comespands o the sliding of
This the whole region of integration is the area ABDC.

T g 0 o)
Y=
X = XKy :li-#i.
P o
A oY=l B
X

D
3, When both pairs of limits are constants, the region of integration is the rectangle ABDC (Fig.}

in 1, we integrated along the vertical strip PQ and then slide it from AC to BD.

Im 1, we integrate along the horizental strip P'Q° and then slide it fro AB 1o CD.

Here obviously |, = |,

Thus for constant limits, it hardly mattery whether we first integrate w.rt. x and then warL v of vice

Varsa,
ILLUSTRATIVE EXAMPLES
Example:
Evaluate _]'I: j‘;? x{x +y2 ]dxdg,r.
Solution:

[ St ¥
Jooxly (<t #xy%)ay = J:["EFH-L;] o

a
E
L
5 o4

82,2 . x0 2 4
Iﬂ{x X +1F}dx d ju[?‘¢+%]dx _

(=
]

5* &8
i 5+ 57 = 1690104

2.13.2 Change of order of Integration

I : VT
T8 double integral with variabla fimits, the change of order of integration changes the limits of
E'IT'FQE."S 2 1imi
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ILLUSTRATIVE EXAMPLES
Exampile: 1

Change the order of integration in tha integral, | = J" I sl Ao yidxdy .
—H A0
Solution:

fn=a) s

-
: /‘
=
T
(]

w

.;

The elementary strip AB from x = 0tox = ,[a? —@ (comesponding to the circle ¥ + y¥ = &),

can be slided up fromy = -a to v = a and integration is carried out. This shaded semi-circular
area ks, therefore, the region of integration (Figure above). This corresponds tothe given integral

fia? )
T I A R Y
The arder of integation can be changed, if we first integrate with respect to y along a vertical

strip CD (going fram y = —Ja? - x* oy= 1.|' 2 _2 ), and then integrate with respect to x as
x goes from x = 0 to x = a. (|.6. slide the strip CD from left to right from x = 0 to x = a)
Thig will regult in the integral,

a .|E-ﬁb
L= Joex[ W’{H}E“f
or L—,I E F] r& f‘: ]'d‘ffﬂ
Example: 2
1p2-
Change the order of integration In 1= [ [ 2" %y dx dy and hence evaluste the same.
Solution:

Hare the integration is first wrt y along a vertical strip PQ which extends from P on the
parabola y = x* to Q on the line y = 2 - x. Such a strip slides from x = 0 to x = 1, giving the
region of integration as the curvilinear triangle OAB (shaded) in Figure.
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o e—
On changing the order of integration, we first infegrate w.r.t. x along a horizontal strip PO ang
that requires the spliting up of the region OAB info two parts by the fine AC (y= 1), g y,,
curvilinear triangle OAC and the Iriangle ABC.

For the region OAC, the limits of integration for x are fromx = 0tox = \fy and thosa for y gr,
fromy =0toy = 1. So the contribution to | from the region OAC is
I
h = .[-:.d"'.[n 0

For the region ABC, the limits of integration for x are from x = 010 x = 2y and those for y ag
fromy = 1toy = 2. So the confribution to | from the region ABC is

o= Jonfi o

o] Py s [ Fa] 2 xy o

x ' g w [
{181

Tpre Vet 1. & a
2[ﬂfdr+2f1ﬂ2 yFdy = Gl

Joon

2.13.3 DoubleIntegrals in Polar Co-ordinates

o evaluate ]';Ejr! Hr,@)cr 08, we first integrate w.rl. r betwean limits r = r, and r = 1, keeping 8 fiked
!

and the resulting exprassion is integrated w.r.t. 8 from 8, to &,. In this integral, r,, r, are functions o
€and @, , 8, are conslants.

Hugirales the process geomalrically,
Here AB and CD are the curves r, = f,(8) and r, = f,(8) bounded by the lines 8 = 8, and § =8, PO
iz a wedge of angular thickness 58,
Then _[rf ir.8)dr incicates that the integration is along PQ from P to Q while the integration w.rL. §

corrasponds 1o the turming of PQ from AC to BD.
Thus the whole region of ntegration is the area ACDE. The order of integration may be changed with
appropriate changes in tha limits,
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ILLUSTRATIVE EXAMPLES
Example:

Calouiate [[r'dr db over the area included batween the circles r = 2sin and 1 = 48in
Solution:

Given circles r=2sn0_. ()

and r=4sn8 (i)

are shown in Figure below. The shadad area batween these crcles is the region of integration.,

If wa integrate first worl. r, than its limils are from P(r = 2 sin B) to Q(r = 4 sin 8) and to cover thi

whale regicn 8 varies from 0 to r, Thus the required integral is

| = [ aef AR Y 4

2 5in g

i Asimb

4

n

fya0

Fand

]

Eﬂj; sin’ Bl

B0 x E’j':zsm* B
using reduction formula,
w2 . . N - [n-‘l]tn-ﬂ]ltnwﬁi....[i]
jﬂ sin” Bde = J.u cos’Bd = M==AY, 5

Haren=4 [using walle's formula with nis even)

M2 i 3xifx
50, [, sin‘ede = =5 2]

Exil'rt]
120x 3XVR) _oney
Dx otz ™

So the required integral, |

2.13.4 AreaEnclosed by Plane Curves
The area enclosed by curves y =1 (x) and y ={,{x) and the ordinates x = x,, x = X, is shown in figure

_ n pkly)
balow and is given by the doubla integral J-,.Jhw:. cx dy

L 2

%II ICU Dy valliovalnici
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EIJ.USTHMWEEIAMPLE

Example: &

= davig ——
xe yis 54

Show that the area between the parabolas y? = 4ax and

Solution: ,
it i hat the parabolas inter
The equations y2 = 4ax and x? = 4ay, it is seen N Sect at Ojp, -

arabolas (Fig. balow ;
A{4a, 4a). As such for the shaded area betwesn these p 9 I'Iw-rarm fomg,
4a and y varies from P to Q i.e. fromy = «ifda to y = 2(ax). Hence the required g,

L

#
L =dpy

= J‘:Izﬁﬂdy e

4

. ‘[:‘{E...I'Eﬁ — x¥/4a)cx

2 i xa a3
o ] JIE__P‘{
2 F.I-EI

n

16 ; 16 _2
—_—a =—d
3 3

e

32

= —ﬂ?
2

ILLUSTRATIVE EXAMPLES FROM GATE

d=
©.131 The value of | [(6—x - y)dx dy is
el

(a) 135 oy 27.0
5 (d) 540
o [CE, GATE-2008, 2 mass)
Solution: (a)

3 3 " ﬁ =d: B ;'.[E :E]d:r: . 135
H{a_x-mm = £¢ -y =% _ii X% -5

0.132 The volume of an object expressed in spherical co-ordinates s given by
% rel3 A s . :
V= _[: L ju' sing dr dg¢ do. The value of the intergal is

(al

(c)
Solution: (&)

oy @i

{b)

(d)

=3

Fa 2 1B
V= | [ [fsing-ordg-de -
o o0

o

- %gi’mﬁ¢ﬁmdﬂ = %H‘

LA A

o

ix ol l:]- ) -
| J[E sing oo

a

5 £m
x [de _
o

[ME, GATE-2004, 2 ™k

1

2 b1
w=dIM = ¢
32 3

e
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A
q.133 Changing the order of the integration in the double intagral |=[ [ f(x, y)dydx leads 1o
04
|= jif{:, y)dxdy, What is g7
rp
(@) 4¥ b) 18y?
(c) x {d 8 [ME, GATE-2005, 1 mark]
golution: (&)
a2
When = [ [ fix-y)cyox
Nxid
H:3 i
y=2 /
1, (B 2)
¥
rq
[ry— =
M [ ]
y=2 Vd
(8, 2)
I X=dy
E— "
24
I fll:x,y}dxdy
oo
q = 4y

Q.134 By a change of variable x (u, ¥) = uv, y (U, vi = wiu is double integral, the intagrand fi(x, y)
changes 1o fluv, v/u) ¢ (u,v). Then, & (u, v} is

(a) 2uhv o) 2uv
(e) v (d) 1 [ME, GATE-2005. 2 marks]
Saolution: (a)
d L
| -a-E =W W u
oy & 1
| e au - U B U
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— =2y
dx % i
= Ao = l U"l" I: $ — = lI?—"'ll_
and gluv) = By !'F ! =
du dv '
£.135 Consider the shaded triangular region P shown in tha figura. What is H wychody ?
[
¥l
L
=]
ﬂ:\_. 4
1 2
& 3 w3
?
© 35 (d) 1
N [ME! E-ATE'm. 2 I1'|a|'|u]
y Solution: (a)

R o

|4
\
0 . E o
The equation of the st ling with x-intercept = 2 and y-intarcept = 115

B

X Y
2ty =t
= ':.n'=‘|—%
=) X o= 2=y
1[2-2y) -y
[ [ Gyaxdy = [ ]L
o a

1
J
i)
‘ 1
gIIE 2y ﬂ?—jE?F vy =3
2_:_ 1

Alerratively, we may also write this integral as [ E (xy dy)dx which is also = A
0
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Q.136 The value of the integral |[€*/dyds
]

i
B gt ®) %{ehtrﬂ
. 2
v — 1
fc) E{eﬂ €) - E[E‘ é]
Solution : (b) [ME, GATE-2014 : 2 Marks, Sat-2]

£l
I'm J[]a**”dy]m
agg
Iﬂnyw e n;-;,-d!rl;:BE: —at
2
= (€% -e")dx
(]

1
| = EEEJE—EJE = %[’H‘I - -(e® =1

1, 1 a y IRTTRR T, LR, LA
= = —— - — - - = =
|=E EE+1 EE e+2 2{9 2ef +1)

Jiat =
| = E{E U

Q.137 A surface S(x, y) = 2x + 5y - 3 is integrated once over a path consisting of the points that
satisfy (x + 17 + (y - 1 = J2 . The integral evaluates to

= 17
(a] 17v2 (b) B
J2
el 37 (d) O [EE, GATE-2008, 2 marks]
Solution: (d)

x+1= [oros8 : ¥Y-1=/2sine

X om ,.I'Emg-ﬂ—1 V= -..IEEJT'IH+1
I

= g{zﬁmﬁ—2+5ﬂslnﬂ+5—3}uﬂ

n
= [(2N2cos0+5/2sing)de
]

= zﬁ:sinn}f +5J§:-cnﬂﬂ}l:!

= 22 (sin2x — sin0) - 54/2(cos2x — cos0)
= 2J2(0-0)-5J2(1- =0
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0.138 f{x, y) is a continuous function delined over (x, v} € [0, 1] % [0, 1]. Given
x> y? and y > %2, the valume under f{x, y} is

¥ul 5=l

ul Es
@ T | tuyidny ® | |ty
yod xoy? R
yul w=d pudr Em
c) f I I,y xdy (d) I T,y edxcdy
y=0 x=0 y=ll z=0
[EE, GATE-2009, 2 Marks)
Salution: (a)

[0 o, i oy

Bf ptvizer [ 2x— |
Q.133  To evaluate the double integral L [LJF [ 5 ?] l:h:] dy, we make the substitution = |

2% -
(;ﬁ—EEJ and v =%. The integral will reduce to

{a) ‘{: [I:E u du]dv (b} J: {_{;E u Efu;]d*.r

@ [ ([udulov e 2 ([Fu cu)av

[EE, GATE-2014 : 2 M o
Solution : (b) B, k)

[T ey

2x =y
= U
i
H
H—-= =
) u
dH:l:EJ
al W = i
Z
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U = j-.j=ﬂ

at x

il
i [
<+
-

af ¥ -
gl
Thus, legral becomes I [fm:iu]d].r
olo

¥ o=

= dy=2dv

< 2
1]
mmi& P [

= V=]

= vmd

< - ]

aLno

Q.140 The volume enclosed by the surface fix, ) = & over the triangle bounded by the lines x = ¥,
x= 0 y=1inthe ry plane is

[EE, GATE-2015 : 2 Marks, Set-2]
Solution: (0.71828)

i
volume = [[t(x.y)dx dy = Ha‘d;dy

1 1
7 {I&*Ea}f=£{e*—1}dr - @ -y, =(e-1)-(1-0)
mg=1=-1eg=2(71828

Q.141 If A= xyd, + %74, , §A-dl over the path shown in the figure is
G
¥

0 4 2148

2
(@ 0 (o) 'ﬁ'
Q) 1 d 23 [EC, GATE-2010, 2 marks]

“ouvalllicu vy valiliouvaliici



athematies for GATE and ESE Prelims MADE S

212 | Engineering M
s
Solution: (c) : ¥
A = xyd, +x°8,
1 = xd, +y&, ad 3 .
El = mﬁx +db'ﬂh:l,-
.0 = xyds+x®dy 4 : [
P y=1, dy=0
I.ﬁ..{ﬂ = jrxd:{ * s " 3 |:|4=————ir-—-..__,LII
P a3 ﬁ -,ﬂ'
Q_H .o TEH_' = ]
.d = [ ] dy = 2 (@-1)=
e! J;;fg'f 3 3
R-8&: y=3 , dy=0
g WaE 3w 31 4y -2
[Ra = | 3eax =55k = e
A 23
1
: = , =0
5-P: -
g Y 1 -2
A.d = dym — (1-3)= —
ga_m 3[?5] y= = Z
— o _ A g, . R
S §a.d = [A.di+ [Rd+[Rd+[Ad
C ] {] " -
LB 2o E Uy
gy 2 4
iy
Q.142 The double integral J'J'r:x, y)dxdy Is equivalent to
(5]}
xl ay
(a) [[fx y)dxay o) |[fx y)dxdly
ki 0%
&8 aa
() J[fxy)dyd (d) [[fix y)dxdy
O oo

[IN, GATE-2015 : 1 Mer

Solution: (c)
a1 ¥
1= [ [f(xy) dxdy
Do
Limit of x:
Lower limtx =0
Upper limtx = y
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Limit of y:
Lower imt y =0
LUpper imt y = g e : l://
By change of order of integration limt of ¥ (i
Limit of y:
Lower fimit y = x i
Upperimiy=a Ll
Limt of x:
Lower lmit x = 0
Lpper imiyx = 3
aa

so. 1= | ffix ¥) dy dix

-

1
Q.143 Theintegral 5,;.[ ! {¥+y +10Wx.dy, where Ddenotes the dise: 12 + 12 5 4, evaluatesto___

[EC, 2016 : 2 Marks, Set-1]
Solution:
Ful. ¥ = mmﬂ
¥ = rsing
dedly = rdro8

[FI.CDSH + 5iN@) + 10)r drce

W=

(r(cose +sing) + 10r) drcfa

._litmsn*s'”m[ }Ldaﬂﬂ r?]: ]

- jtmsﬂ+mna}dﬂ+-f5{#kﬁ

g e

= e L L Tt

ifs,. v
= E[E{smﬂ—msﬂl]: + o 20(2m}

- l[_ﬂ.{n_n_{u-ﬁ+2u]=ﬂ+2ﬂ=2n

2m\ 3
Q.144 Suppose Cis the closed curve defined as the circle x? + y* =1 with C oriented anti clockwiss,
The value of (xy?dx + *ydy) over the curve C equals -

[EC, 2016 : 2 Marks, Set-2]

Solution:
By Green's thecrem

[I}"'zd.t+ rz];l'dy - ji[%[fy}—%h}-‘zj]d:ﬂy = ]:i[l:ir}"- 2xy} =0

|
.i
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2 4« 1 and the stralght lima x 4 ¥
&4

gion hounded BY the parabela y =
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Q.145 The area al the re

is ;
@ % (o) 3
10 d =
o : [CE, 2016 : 2 Ma
; m.ﬂﬂq]
alution: (b) |
; At the point of inlereaclion of the cunrei; _—
}f:f+1andx+y=:3|-g.'_.l=ﬂ-.t. 2]
Pel=0-%
Zax-2=0

=3
=4 :u—-EI1Erﬂ3_.TE.I=+1

Required area is ﬂ dyds
[

= A=

’ [f’” !ﬂ].-']dx - [ 3= s} 4 1) dx

F..,fqn

R § o

1

A B

=[_'t-..—£--|-2;|:} - —
3 2 3

of the 3-dimensional finite region V. Divide V intg

2.13.5 Tripleintegrals
thin the rth sub-division &

Consider & funclon f{x, v,
n elemantary valumes 8V, 8Va....

Conaider the sum

z) defined at evary point
., 8¥_ Let {x, ¥, &) be any poirt wi

E:.F{-:rl?r--z#mll

=l
The limit of this sum, if it exists, 88 0 — e and 8V_—0is called the triple integral of Hx, y, Z) over the
segion V and is dendied by

J‘ f j {3y, Z)dV
For purposas of evaluation, it can also ba expressed as ihe repeatad integral
qgpWeriz
[T fxyzidxdy dz,

if x,, %, are constants; v, ¥, are aither constants or functions of x and 2,, Z, are either constants of

functions of x and v, then this intagral is evaluated as follows:
First i{x, v, z) Is integrated w.rl. z batween the limits, 2, and z, keeping x and y fixed. The resuling

expression is infegrated w.rL y betwsen the limits y, and y, keeping x constant. The result jus.
obtained is finally integrated wort, x from x, to X,.

}-ua I‘n‘ﬂur J-:gtu.ﬂﬂ:xl v, 2)dzkykix

my [yl L ayiny)

Thus |

whare wﬁintggratinr_r is carried out from the innermost rectangle to the outermast rectangle.
The arder of integration may be different for different types of limils.

-
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ILLUSTRATIVE EXAMPLES
Example: 1
N N S
Soluton:
Integrating first w.rt y keeping x and z conetars we nave
L= j_l-j::fj'—!';—}?.. ) Ox gz
= I_._I-::[W-I'ilz‘w-éhz]mﬂz = Ej:_%—;':'l.—gzﬁ
o 1 gi__ '._E': r L o
EI—'[E ¥ -E EHZ .='_,-
Example: 2
Evaluate ]',_[‘ 2 j'_:_‘ B xyZ dxdydz
Solution:
Wehave, |a= j_x j‘:_‘”": yl[:‘L'E"i'zm]u;jdr
BN el B P T
= j,_,rf: r-;?h gy pdx = IH{.E ?'Ef"—x"!rzﬂ'r}d?‘
| api-F) .
e S M
g

11 : e 2 [ 11 1 1 1
= = ::-:-2::3+x]dx-— —— = e g —
alo B2 4 FL a[e 2 ra] 4B

ILLUSTRATIVE EXAMPLES FROM GATE
. x
Q.146 The region specified by ((p, ¢. 2)3<p <5, FE®s E. 3 5 22 4.5) in cylindrical coordinates

has volume of .
[EC. 2016 : 2 Marks, Set-1]

Solution:
E xid 45 gg) 454 =
v« 11 Tomanae = T e - [ [orcnce-sots 2
nzﬁ.n;_.rn.'! 3 eiah £ My 3 /8

= 3[5_5]{4,5_3; ” E-g-{‘l.ﬁ} = 4712

L&mm] (VTN V TN I NI |
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2.14 VECTORS

2.14.1 Introduction

2.14.2 Basic Definitions

Lnctions in 3-5pace and extends the differential caley)
nd various other guaniities are vaclors. This makes HL:

algebra and calculus of these vector functions the nglural instrument for Iha-_anginnﬂr and physicig;
in sclid machanics. iluid fiow, heat flow, electrostatics, and 50 0. The engineer must Undersiang
these figlds as the hasig of the design and construction of system, ar robots. |4_1 ll‘traa dimensions (ag
opposed 10 higher dimensions). ggnmet;i(;aj ideas becomea influantial, er‘_lrlc:hlng the theory. an g
frany gamgtfmal guantities {tangents and normals, for gxample) can ba given by veciars,

w first explain tha hasic algebraic operations with vectors in 3-space. ‘u'ecllnr differential caloulys
begins next with a discussion of vecter functions, which represent vecior fields and have varioys
physical and geormetrical applications. Then the hasic concepls of diffarential calculus are extendes
tovecior functicnsina simple and natural fashion. Veclor functions are uselul in studying curves ang
thair applications a3 paths of moving bodies in maechanics.

Wa finally discuss thrae physically and gemﬂatric:allg.rimnr’ram concepts related to scalar and veclor
fislds, namely, the gradient, divergence, and curl, Integral theorams involving these concapts fallow

invector integral calculus.

This chapter deals with vectors and vec_h_:nrf
to these veclor junctions. FOrGes, yelocities &

ng applications we usa two kincls of quaniities, scalars
and veclors. A scalar is a quantily that is determinad by i3 magn tude, its number of units measured
on a sutable scale, For instance, length, temperature, and valtage are scalars.

A vector is a quantity that s detarmired by bath 15 magnitude and ils direction; thus it is an arrow o
directed lina segment. For instance, a force is & vecion, and so is a valocily, giving the speed and
diraction of mation (Figure below]). We dencie vactors by lower case bold face letters a, b, v eic.
A vector (arrow) has a tail, called its initiad point, and & tip, called its terminal point. For ingtance, in
Figure below, tha friangle & ranslated [displaced without rotation); the initial point P of the veclora
is the original position of a point and the terminal point Q is its position after the franslation.

In geometry and physics and its engineeri

Wiskodily
'REMH
lh q
I Fﬂ'rl}ﬂ ".'
.I'J a
@ Sun P
Force and Velocy Translalion

The length {or magnituda) of . i

nituda) of a vector a (langth of the arrow) is also cal ;
norm) of & and is denated by |a). } S
A vector of length 1 is called a unit vector,

2.143 Equality of Vectors

By definition, tw _

E:I"I'LB dlrmllun{l:;jr:;tir:l:wa}?imh al.: equal, wrilten, & = b, if they have the sama length and I1°

be chosen arbitrarily, This dafinition avector can be arbitrarly ranslated, that s, its initial poirt ¢4
; inition is practical in connection with forces and other applications.
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VAN v A

Equal vacians, Waelos heréng
#i=zh

Veciors having  Yeciors Ridvng
e same different lengih
oun differan dtecionbd and diffarerd
diréction diffaramt langih  dirsction

Vesios

2,144 Componentsof aVector

We choose an xyz Carlesian coordinate systemin space, thatis, a usual rectanguiar coordinate system
with the same sualg u-f measuremant on the three mutually perpandicular coordinate axes. Then i a
given vector & has inftial pairt P: (x . v, z.) and tarminal paint 0 (%, ¥, 2,) the three numbers,

1, & =%-%, _az =Ya~¥y 83=Z,-z, ae called the components of the veclor a with respect
to that coordinate system. and we wrile smplya=[a, a,a)

Length In Terms of Companents: By definition, the length |4} of a vector a is the distance

batween its inilial point P and terminal peint Q. From the Pythagarean theorem, and figure (i)
balow we sea that

2, ja| = Jaf +ad +al

4

Carasisn coonina

Example:
Components and iength of a vactor.
The vector a with initial point P: (4, 0, 2) and tarminal point O (6, - 1, 2) has the components
8,=6-4 =2,a,=-1-0=-1,8,=2-2=0

Solution:
"H-H:Hr as= [E.—1,ﬂ].
| ol = FTAT = 46

If w choose (-1, 5, 8) as the initial paint of a, the corresponding terminal point is (1, 4, 8),

If we choose the origin (0, 0. 0) as the initial point of &, e cofresponding terminal poirt is
(2. =1, 0); |.. its coordinates aqual the components of &, if origin is closer as inifial point. This
suggests that we can determine each point in space by a vector, as folows:
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2.145 PositionVector _ .
A Cartesian coordinate system being given, the position Vector S
apoint A; (x, y, 2) is the veetor wilh the vector with the origin {0, 0, 'L
0) as the initial point and A as the terrninal point. Thus, 1= . v. 2].
Furthermore, Ifwe Iranslaie a vector @, with initial paint P and terminal
paint Q, then carresponding coordinales of P and Q change by the ]
came amount, g0 that the components of the vector remain <7 T i TN
unchanged. This proves

2.145.1 Vectors as Ordered Triples of Real HIJI'I"IhITS -
Thearam: A fixed Garlesian saordinale system being given, each vector is urnq_uew deteming dby
its orelared (riple of coresponding components. Conversely, [0 each mqefg.d triple of raal number
(a,,a,a,) thera corlesponds precisely ane veclora = [a,, 8, as]. In Famc.”mr‘ the: ordered triple (g
0, 0) comaspands to the rero vector "07, which has length 0 an:{l rio diraction.

Hence a vactor equation 8 = b is equivalent to the three equalions a, = by, 8, =D, 8, = B, for the
components.

We saa thal fromour 'genma!rical“ dafinition of veclors as arows we have arrived at an *slgebraie-
characterization by above Thearerm. We could have started from the latter and reversed our process
This shows (hat the wo approaches (i.e. *geometrical” and "algebraic” approaches) are equivalan

2.14.6 Vector Addition, Scalar Muitiplication
Applications have suggested algabraic calculations with vectors tet are prachically useful and aimos;
as simple as calculations with numbers,

Position vecior 1 of a poing & [y rd

2.14.6,1 Definition: 1
Mﬂmmnlu&m:ﬂﬁmﬂ+bfoMvECDJTE-H=[ﬂ|.-EI=.33]EFE|b=[bg.bf.bﬂhﬁﬂmﬁ'lﬂdb?ad{jrg
a+b = [, +b, a4+ by 8y +by

c=g+h

vecior addition
Geometrically, placs the vectors as in Fig. above (the Initial point of b at the terminal point of a): then

a + b is tha vector drawn from the inifial point of a to the terminal point of b.
Figura shows that for forces, this additian is the parallelogram law by which we obtain the resukant
of two forces in mechanics.

Resuliant ol twa lonces (paraligram law)

Figure illustratas (for the plane) that the “algebraic” way and the "geometric™ way of vector addition
armount to the same thing.

canned by CamsScanner
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e

Basic properties of Vector addition fallow immediately from the farmibiar laws for real numbers
(8] &+ Db =D+ a {commulaiviy)
{b) {0+ W)+ W =04+(V+ &) (associativity)
ic) a+0=0+a=3a
(d) &+(-a)=0
where -a denotes the vector having the length |a| and the diraction opposite to that of a
LR

Vimclor agelition Cormmurativity Aol by of
of varice adeihon Wi addsgn

In property (D) above. instead of u + v+ wlor(u+v)+w we may simply write u = v + w without
brackels, and similarly for sums of more than three vectors, Also instead of & + a we also wnte 2a,
and soan. This {and the notation -a before) suggests that we define the second algebraic operation
for vectors, namely, the multiplication of veciors by a sealar as followe.

2.14.6.2 Definition: 2

Scalar Multiplication (Multiplication by a Number): The product ¢ & of any vector a = [a., a,. a4

and any scalar ¢ (real number c) is the vector obtained by multiplying each component of a by ¢,
ca = [ca,.ca, ca,)

Geometrically, if a = 0, then ca with ¢ > 0 has the directionof & and with ¢ < 0 the direction opposite

o0 a. Inany case, the length of ca is jcal = |cfjal, and ca = 0if 2 = Qor ¢ = 0 {or both)

/ /-!" e
S £ ;?‘f"’w s

Sealer mullipication |l icAtiar Dilemence of vecicrs
af waclor Dy Scalans {rumbers)|

ILLUSTRATIVEEXAMPLES

Exampile:
Vector Addition and Multiplication by Scalars.
With respect to a given coordinate system, le

[4,0,1] and b = [2-5.4]

d =
Solution:
_ 4]
Then -a = [—-4.11—1].7&:[23,'1.?].3-1-'3:[5.—1-5 and
2a-b) = 2[2-53] = [4.10.4] =2a -2b.
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2.14.7 UnitVectors

Ary VECIoH whase length

are akong x. ¥ and 7 coordinale anes
i !

L4

i 1 18 @ unit v ecior .| and k are g of Special unil VOl s
5118 \

==

cosh |+ Himel |

gives evary unit vector in the plane
in Terms of i, J. and k

epresentation of Vectors
1.-1‘.?-1 “ + o I_EI.I, a.. ﬂ_{l = A, * -ﬁ_-1 ¥ .1I|_-|"-

3 s of the axesz ol g O
n lhﬂ ',}I.-L.‘t!t"l & ired TN € al "".-“-El_rl
- k are he unit WaCIOrs |
In this rames&n:atrﬂ. |3

coordinate system

T unsd vecions |, |, k and [he rapreseriation -4}

i=[1.00 j=10.1.0) k=[0.0 1]
um of three vectors parallel 10 the three axes

and the right sideofa = 2,1 + a.) + 85K isas

ILLUSTRATIVE EXAMPLES
Example:
i, j. k Motation for Veclors:
Solution:

;
1npta~tinusanamplamaa=[4.ﬂ, ljand b = [E.-ﬁ 5],
wehavea =4i +k b=2-5+ %k.anﬂ 50 on, in i, j, k notation.

2.14.8 Length and Direction of Vectors
Any vector & may be written as a product of its length and direction as follows:

- u(d)

_ a
hera |4 iz tha langth of vector and I_EIT i% a unit vectar in direction of a

%‘JMIIIIU\J ”] Nt AL TINI UL T IV
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ILLUSTRATIVE EXAMPLES
Example: 1
Express 3i - 4 as a product of length and direction:
Vo= Ji-di
Solution:
lengthalv = M = m
. o i ¥ d-4] 3. 4.
The unit vector in direction ol y = = 2 =—— = Sjea
AT TS e
3. 4.
v di-d= 5[-54-5!]
-3l - 3 -()
Mota that Erhgﬂ = : + z =
Si Ei--‘E" it vect
ince. & 5| is & unit vector.
Example: 2
Find a unit vector in direction of 4i + 6j.
Solution:
_ oM 4i+6 4. B .
The required vector is TThs w = EH:"E-E]'
Example: 3

Find unit vector, tangent and normal to the curve

if gq-% at pt{1,1)

Solution:
Unit vector tangent o curve:

u (| W3R
¥ =12 Li"F 8

a ;
Any vector with slope of > can be writtén as
v = K2+ 3

M = k22 e = V13 A

A unit vector in direction of v I8
. o - I+ —=|
U= 1= "8k A3 N3

B B,
Mote also that - 31*3ﬁl

is another unil vector tangent to the curve, but in opposite direction 1o u.

Unit wactor normal 10 curve:
3 .

2 .,
u= 73" A3
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Any vector normal to ai + bj 15 of the form of bi - aj. since product of this slopes i

[EI_E w
al b

SN S fir T
Enauech:rnnrmallﬂ-nJ:ﬁH;ﬁ-l isn= Jﬁl ,ﬁ?l

3 -
" |+ i is another unit vector nonmal (o he curve, DULIN opposita dee
Nota that -n ?1-5 31'5 0N I,

ILLUSTRATIVE EXAMPLES FROM GATE

Q147 Consider the ime-varying vector
I = #15cos(nf) + ¢osin{wl) in Carlesian coardinates, whera w > 0 i a constan, When e
vector magnitude /] is at its minimum value, the angle 8 that / makes with the v ag y;,
degrees, such that 0 < 8 < 180) s

[EC, 2016 : 1 Mark, Set.2)

Solution:
I'= x15cosal + ¥ 5sinmt

1= J(15cosmlf +(5sinmt)

= J225c05° ol + 258" ot = V25 + 200c0s° ml
|1 is minemum when cos®wt = 0
o B = ol =90

2.14.9 Inner Product (Dot Product)

Wa shal now define a multiplication of two vectors that gives a scalar as the product and is suggesied
by various applications,

Definition. Inner Product (Dot Product) of Vectors
The Inner product or dot product a. b (read “a dot b") of two veclor i
_ & 8 and b is the praduct al
lengths times the cosine of their angla, see Fig. below ! e
1. a.b=lalltlcesy
Theangley,0 <y < n betweena and b is measurad when the veciars have their initial points
coinciding, as in Fig. below |

A T
L &L_' ] "c:-r:-. '
[ 1] B =
=0 “..h={|, ab <0

Angla betwsen voctors and vatliie of mnar produc:
i 1-&2.&3],b-[h1.ﬁ? 0y]. and
2, a.b =80, +ah, + ab,

can be derived from (j).

In components, a = [a

Since the cosine in (] iti
that the inner prm{'}fri:?a?: inﬁmm, #810. Or neggtive, so may be the inner product. The case
® 0l great practical interest and suggests the following concep!

E!lm ; _.l. T — _—
Scanned by CamScanner
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A vector g is called orthogonal
call these veciors arthogona) v

10 a vector bifab=0T
Bel

For nonzero vectors we have a
vea.b =g |

following important theorem, and only i Gos y = 0; thus y = mf2(90°). This proves the

Theorem: 1 (Orthaganality)

The inner product of two nanzers vectors is zero i

g hen b is also orthogonal to a and we
- iearly, the zero vector is orthogonal 10 every vecior,

and anly if these vectors are parpandicular,

Length and Angle in Terms
5 erlica of Inner Product: Equation (i) above with b = & gives a.a = jaf.

From (i} and (iil) we obtain for the an

Qle Y between two nonzero veclors
4 cosy=2B___ab
Bl Ja.aJon
ILLUSTRATIVE EXAMPLES

Example:

Find the inner product and the lengths of & = [1, 2, 0] and b =[3,-2, 1] as well as the angle
betwaen these vectors,

Solution:
ab = 13+3(-2)+014=-1

Bl = Ja-a = JR428i0f = B
Bl = Voo = F+(-2F+F = fia
_ ab
¥ = arc msﬁllhl = arc cos (~0.11852)

= 1.68061 = 96.865"
The given vectors make an obtuse angle batween them solves and notice that the inner product
has come out negative because of this.

General Properties of Inner Products: From the definition we see that the inner product has
the following propesties. For any vectors a, b, ¢ and scalars q,, g,

la} [q,a +qb].¢ =g,a¢ +qb.cC (Linearity)
b) ab=ba (Symmetry)
c)a.az0 {Positive-definitenass)
{d} a.a=0fandonly fa=0 {Positive-definitanass)

Henes dot muttiplication is commulative and is distributive with respec! to vecior addition; in
lact, from above (a) with g, = 1 and q, = 1wea have

5 (& +b)c =8¢+ b (Distributivity)
Furthermare, from a.b = 18116l cosyand jcosy{ <], So

6. |a.bl = |al |l (Schwarzineguality)

[# |a+ bl - |a| + |l’.‘|| {Triangle inequality)
A simple direct calculation with inner producls shows that

“ouvalllicu vy valiliouvaliici
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lity)
_wlz<gilal?+ |b]?) ({Paralielogram equa |
8. IIEH :ﬂ tl;aln; E!}a {; |piayi{ L;sic wale in so-called Hilber spaces (abstract innar PrOBUCt s,
q 5 L}
which form the basis of quanturm mechanics |
+ agb, from ab = lal bl cosy
a = &l +E.£J+33kﬂﬂdh=b|l+h2i+bak_
ii=[iE = 1|j.j|= qu 1 ﬂ"d"ﬁ-k=fl-:F.1
vectors, we have from (3)ij=|F _ .
Sincal, | tﬂaﬂi’;:‘ﬂ IJlrmr:rnml to sach other (The coordinate axes being perpendicular to each ot
cal,j, rthog

=0, jk=0 ki=0 _
v-ﬂ;@ﬂ’f trom theorem, ij= 0. | Ol + &+ a5K)(byi + b + D)
' 8.
g . wae first have a sum of ning inner produc
e S pperY a.b = abil+ H,bal.j + o+ aSI:IEI-:-H.
ser0, we obtain a.b =a,b, + 8, By + 8505 .
Typical apphications of innef products are shown in the oBowing

Darivation of ah =ab, + ﬂﬁbz
Let
since |, |,

Sinne six of thess progucts are
Applications of Innar Products:
examplas.

ILLUSTRATIVE EXAMPLES

Example:
Wark done by a force as inner product.

lution: _
¥ Consigder a body on which a constant force p acts. Let the body be given a displacement d.

Then the work done by p in the displagement is defined as
W = |pldjcosa=pd
that is, magnitude |of of the force times length id| of the displacement times the cosine of the

angle a between p and d. If & < 90°, asin Fig. below then W = 0. If pand d ara orthogonal, then
the work done is zero. If a » 90°, then W < 0, which means thal in the displacement one has ta

do work against the force.
X'
o
-

d
Work dane by & force
Vector Projection: Froj,® is the vecior projection of a on another veclor b,

e e

1]

[
p = Pro*

= (Scalar component of a in direction of b) x {a unit vector in direction of vl

o - i)

(1%)-

< clten
Typical application of projection is finding companent of n forca in a given direction s 5 ol
required in machanics.

&:ullllbu Ll‘y Al Ivwuvaldiiivl -
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ILLUSTRATIVE EXAMPLES
Example:
viector projection of a on another vactar b.
Find the vecior projection of dvesiora =
2i - 3 = i
Solution: CERRE

-18, 24

o

S

- &b] 23-1
Froj i o | — d
b [hh D [33+4d]{3|+d1:'='—lf3|+dﬂ-

2.14.10 Vector Product (Cross Product)

The dol producl is a scalar. We shall zaa that some applications, for instance, in cannection with

Lic 5, r
nata I"EE]UI e a product of wo vector which ig again a vector, This is called vaclor product of bW
veclorns or the cross product,

Definition. Vector product (Cross product)

The vector product (cross product) a x b of two veclors & = [a,, 3, a ] and b = [b,, b, by} isa vector
v=axb=[affojsiny 0 suchthat &. b and n from a right handed system, with i being a unit
normal vector perpendicular 1o plane of s and b,

Klidcdhe ling

L

Index tnger

Vec|or product . Thumb
It a and b have the same or opposite direction or if one of these vectors is the zaro vector, then
v=a xb =0 In any other case, v = a = b has the length.

1. vl =lallbl sin y

This is the area of the parallelogram in Figure above with a and b as adjacent sides. (yis the
angle batwean a and b). Tha direction of v = a xb is perpendicular to both a and b and such that
a, b, v, in this arder, form a right-handead tripls as shown in figure above.
In components, v = [v,, v, v;| =axbis

2 wvy=aghy-agh,, vy =80, -ab; Vi=ad, -3
e, If a is in direction of (rght hand) thumb, b is in direction of index figure, then v = a = b will be
a vector in direction of tha middla figure.
In tarms of determinants:

_ |22 & R iy R
o 27 by byt by B
Hence v = [u,, vy, vyl =y i 4 vy + vikis the expansion of the symbaolical third-order determinant
Y I
axb = |8 dp d3
by bz By
by the first row, (We call it ‘symbalical” because the first row consists of vectors rather
than numbers. }
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214104 Finding a Unit Vector Perpendicular to twe Glven Vectors a and b

A unit vector parpendicutar o two given vectors a and biis given by

axb axb
"= Jalblsiny  laxb]
ILLUSTRATIVE EXAMPLES
ba: 1 _
Eﬂﬂmﬁulth respect 1o a right-handed Carlesian coordinate system, lat a = [4, 0, -] 4,
b=[-2 1.3}
Saolution:
I ] K
axb=[4 0 =1 = i=10] + 4k =[1,-10, 4]
s
Example: 2 , )
Find & unil vector perpendicular to both @ = 3i + | + 2k andb =2 -2j+ 4k
Solution:
i J K
axb = 1 2 =& -8{-8k
2 -2 4
A unit vector perpendicular to both a and bis
_ ax b
"= Jaxt

Bi-8j-8k 1. g
BY3 _Tﬂ'n =

Ny
Thera are z unit vectors perpendicular 1o both a and b. They arg +n = tﬁ[l—;—lﬂ}

Exampla; 3
The vectors from origin ta the paints A and B are § = 1 — 6] + 2k and b= 27 + | - 2 respectvely

Find tha area of

{a} thetriangle OAB

(b} the paralielogram formed by OA and OB as adjacent sides,
Solution;

Given OA = =31-6]+2 and OB = b=2i+j-2k,
| K
-6 2
1 =3
(12=2) -(-6-4)] +(3+12%k = 10i+10]+15k

VIR +107 +152 = Ja25 = 517

xb =

L1
3 L =

i
171
ol
i
1

_.-‘

Scannea By Eamgcanner
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arad of s 1
(a) ADAB E|a:r:|'_'|| = 2—-55 0. units = guﬁ-f 4], unils.
(b) Area of paralielogram formed by OA &nd QF as adjacent sides
o IE“E‘[ = 517 0. units,

Example: 4
EEM;EI'HG vectors, find the area of the iriangle with vartices A(1, 1, 2), B (2, 3. 5) and C(1, 5, 5)

Letthe vectors 8 and b represents the sides AB and AC of AABC. than

o L
8§ = pg=PV.ofB-PValA :
= (2i+3]+5) - (1+]+3) g
= T+E]+3|E
and b = aC =PVolC-PValA “.‘; 2) : I:E-g-m‘

& [7+51+5|-'::|-{T+;+3"q = di+3:;

=

]k
No ixb = | 2 3| < (6-12i-(3-0)j+(4-0K
= —ﬁT—ET+'1E
= BxB = JCoF (37 + 4 =61
g R
. Theareaof AABC = E]ﬂuh|= EJE_1

2.14.10.2 Vector Products of the Standard Basis Vectors

Since |, | k are orthogonal (mutuelly perpendicular) unit vectors, the dafinition of vector product gives
same usaful formulas for simplifying vector products: in right-nanded coordinates these are

Ixjmk juk =1, kxi=|
|dim=k kx] =, Ixk=-]
2.14.10.3 General Properties of Vector Products ax %

Vector Product has the property that far every scalar |,
(!a)xb = f&axb)=ax(/b)

It is distributive with respect to vector addition, that is,
ﬂx{h+f:}=[ﬁrﬁ]+¢-§le=}. - a
(a+B)x6 = (ax&)+({b=é)

“Scdlleu Py cdlrnoscdlirer
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it iz not commutative oot anticommutlatve TE
gra = —larh)
I s nol aseocEatve, that is
lpwrc) = @bl r
e iugl v B T Gerer,
50 that the parentneses cannot o omtted

2.14.11 ScalarTriple Product
The scalar triple product or moed nple product of thres vecines
a=la,.a, 8] b=]0, 0, 0] c=[c, C;. G
% denoled by fab cjand s defned by la O £)8nd S detresny(a b c)=ai(b x ¢
We can write this as 3 trrd-crder determinant For s weset O xC=v=[v, v, .} Then from,
dot product in components «e oolan
afp=c) = 8V =28,/ + &V, v BV,

. O 0. 0, iy B
= Ti=ag] - +idy

H
£y G cy O3
3 2

Fig

C G
The expression on the ngnt is the expanswon of a third-order determinant by i1s first i Ths

{8; 8y &
fa b ¢ = aftm;;:ltu b by
Gy €z Cy

Geometric Intarpratation of Scalar Triple Products
The absolute value of the scalar inphe product is the woiume of the paralielepiped with a. b, ¢ as edge

vectors (Figure below, lafbxc) = B Dxclcos B where [@ [COSP 15 the haight i and, by (1), the
bass, the paralielogram with sides b and ¢, has area  D-c). Maturally, il vectors a. b and c are
coplanar, then this volume is zem. &b « ¢) =0, if &, b and ¢ are coplanar.

B o i

GrEormatnasd fterpralalion
&l a scakar pie paodect

we 3lso have for any scalar k.
(ka b c)=Hka b c)
because the multiplication of a row of a determinant by k multiples the value of the determinant by k
Furthesrmiore, wa prove that
afbxc) = (axb)c

8y dsz 83
Proaf: LHSofabove = |by by by
G G Gy

&dlllleu Dy calmnoacdliiel
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6 G G5
AHScfabove = (axb)c=claxb)=|a, 8 &
by by Dy
By properties of determinants it can be seen thal the LHS and AHS determinants are incdgei DAy |
ecual
50, 8.(bxc) = (axh).c
in fact alb=c) = bifcxa)=c.(axb)

ig. the value of triple product depends upon the cycle order of the vectors, bulis independent of the

position of dot and cross. However if the order is non-cycle, then value changes.
1.8, afbxc) 2 bilaxc)

ILLUSTRATIVEEXAMPLES

Example:
A tetranedron is detarmined by three edge vectors &, b, ¢ as indicated in Fig. balow.
Find its valume it with respect to right-handed Cartesian coordinates, a = [2,0,3).b= [0.B. 2],
c=[3 3, 0]

Tadrahaaron

Solution: |
The velume V of the parallelopiped with hese vectors as adge vectorns i the absolute value of

tha scalar triple product.

6 2

2 3
0 EEEED

330
Thatis. = 66 The minus sign indicatesthat a, b, ¢, in this order, form a left-handed triple. The

fa b c)= ‘+3‘U E|=—1E—Erd-=-ﬁﬁ

a 3

1 ;
volume of the tetrahedron s B of that of the parallelepiped. hence 11.

Testing Linear Independence of 3 vectors using Scalar Tripie Product:
Linear indepandence of three vectors can be testad by scaler riple products, as follows. We calla
given set of vectors 8, - . 8y, linearly independent if thaonly scalarc,..... ¢, for which tha vactor

Bqualon

L+ +C . T + CoBim) = 0 . |
ig msﬁef‘ﬂ‘r’a c ?imqj] gy = 0. ...,mc:rI1 - 0. ptherwise, that is, if that equation also holds for an
'I ¥

m-tuple of scalars not all zero, we call that set of vectors linearly depandent. |
Now thrae vectors, if we let their initial point coincide, form a linearly indepandent sat if and only if
they da not lie in the same plane (or on the sama ling). i.e. Thasa_vacturs ara lingarly independent, I
and only if they are not co-planar. The interpratation af a scalar triple product as a volume thus gives

the following criterion.
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Theorem: 1 (LInear Indepanderce of Three Voclors)

Three veciors form & lingarly independent sal it and onfy Il tholr scalar iriplo prod e
The scalar triphe product s the mos! important *repoalod product.” Olher rpamor e
ara used only ccoasionally,

2.14.12 VectorTriple Product
If a, b and ¢ are threa veciors then tho voctor riple praduct s wrillen s o « (b » o)
It can be proved that & x (b x ) = (acib - {a.bje

i """H]

hatit 1y e

ILLUSTRATIVEEXAMPLES
Exampla:
Lete=i+j-k bsi-|J+ki c=l-|-K
Find the vactora x (b = ¢)
Solution:
Sinca, axi{bxc) = [a.c)b-{a.b)c
gce= 1-1+1=1
g = 1-7-1==1
So, ax(bxc) = 1.b-(-1).c=b+cC

(I-j+k+(l=j=-k)=2i-2
This is the end of vector algetra (in 3-space and in the plana). Vector calculus (i.e, diferantiation
of vectors) begins in tha next section.

ILLUSTRATIVE EXAMPLES FROM GATE

.148 I P. O and R are lhree poinis having coardinates (3, -2, -1), (1. 3, 4), (2, 1, -2)In XYZ space,
then the distance from point P 1o plane OOR (O being he origin of the coordinale systam| ig

given by
(a) 3 {b) B
e} 7 (d) 9 [CE, GATE-2003, 1 mark]
Solution: (a)
Solution by Coordinate Geometry:
This prablem can be dona thraugh coordinate geomairy formula or through waclors.
Given, P (3, -2, -1)
Q1{1,3,4)
A2 1.-2)
010,0.0)
Equation of plane OQR is,
X=% Y=Y I-Z
Xa=¥ Yo=Yy Zz=%| o p
Xp=% Yi=Wy &a-d
x-0 y-0 z2-0
1 3 4 -0
2 i -2
¥:} =2y +z =0

Scanned by CamScanner
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e

Now L distance of (x,.y,, z,) from ax 4 by + €2 + d = 0 is given by

ax; +by, +cz.+d
Va? +b% + 7
Therelore, L distance of (3, -2,

=1} from plane
2% -2y + 2 = 0is given by

2X3-2x(-2)+ (-1

JZ -2+ |73
Solution by Vectors:
Given, P{3, -2, -1)
Q1,3 4
Ri{2.1.-2)
0(0.0.0)
We wish to find the distance of paint P ta the plane DGR, O being the origin, See figure below.
{3 -2.-M

01,3, 4)

00 0.0 Riz. -2

Lat us drop a perpendicular from pt P(3, -2, -1) 1o plane OOR. Let it meat at pt S(x, y, Z). Now
we wish to find length of PS. For this we must first find x, v and z values, Findly, 5 is on the
plane OCQR. 05 is coplanar with OQ OR. This gives us 08 . (00 xCA) = 0.

Since the position vector of OS is x| + yl + zk, the position vector of OQ ks | + 3 + 4k and
position vactor of CR s 2i + 1= 2k

D_E:@ﬂxﬁﬁ}- =0

My - M
-

Z
4
=
= ~10x + 10y -5z = O o (1)
Also PS is normal 1o plane OGR and so nermal to OG and OR.

A vactor normal to OO and OR is OG = OR

| j k
DG x0R = |13 4)=-10i+10{-5k
3 1 -2

Mow the vaclor PS Is given by (3 — x}¥ +{-2-ylj+{-1-2k Mow PE must have zama

diraction ratios as a vector normal to 00 and OR sinca PS itself is normal to OQ and OR .

So, q_y:Z-y:=1-2==10:10:-8
This results in 2 equations
J-x =10
-y 10
= x4y =1

. (i)
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= S i = il A — Tty

2= ]

ot -2 5

£ V2 a -4
ik

Nirw, w hive 3 equntions in 3 unknowns wiich can be solved.
Substituting x and 7 in terms ol y in fo aquation (i) wa gatl,

001 - v) + 10y 5[ "1'2""'] =0

—a A
~ Irom aquation (i}, x = 1 and Irom equabon (ii), £ = -2
S0, tha point 5 is given by S(1,0,-2)
MNow, sinca P is given by P3.=2. -1}
PS = (3- 1)+ (-2-0)+ (-1 + 2k
= -2+ k

N LT e

Q.148 Theinner (dot) preduct of two non 2ero veciors B and ¢ is 2ero. The angle (dograes) T

7S]

the two vactors s

(a) O by 30
{c) 20 (d) 120
[CE, GATE-2008, 2 marks)
Solution: (o)

P.Q =0

B.8 = [Pl |Q] cosa
if 50 =0
— IPl lO]| cose = D
aSinca, P and Q are non-zero vectors
= cosd = 0
=% B = &F

Q.160 If d and b are two arbilrary vectors with magnitudes a and b, respectively, |ﬁ « E.'IE will be

equal to
@ ot~ (o f © ab-aiG
R
() &% +(3-B) (@) ab+d.B
[CE, GATE-2011, 2 marke]
Answar: (&)
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Q151 Forthe paralielogram OPQR shown in the skatch i+b] and OR = cf +d] . The area of
the parallelogram s skatch, OF = ai + bj and OR = cf +d|

i}
A
P
i :_3 - t: {B) ac + bd
Ei‘.nlu'ciu[:.{:j ( }+ : d) ab-ed  [CE, GATE-2012, 2 marks]
n. (&
—= L}

The area of paralielogram OPQR I figure shown above, is the magritude of the veetor product
= |ﬁFnﬁﬁ|
op = Ei.+b]
DR = ei+d]
I =1 2K
OFxOR = (8 b O -Di+El'j+{ad—hc}ﬁ
¢ d 0

fmﬁxﬁﬂ = ,jni’+u2+{gd_uc;? =ad-be

Q.152 The angle belween [wo unit-magnilude coplanar vectors P(0.866, 0.500, 0) and
Q (0.259, 0.966, 0) will be

(@) b) 3r
{c) 48 {d) EF
[ME, GATE-2004, 1 mark]
Solution: (c)
5 = (8661 +0.500] +0k
& = 0.2591+0.966] + 0k
B = [F|0 cose
Hara, |IP| = @l =1 {Lnit magnitude)

So, (0.886] + 0.5] + DK).(0.259] + 0.966 | + ok

J0.886 +(0.5F x/(0.259) + (0.966)° cose

0.866 x 0.259 + 0.5 = 0.966
cosf = ﬁ}f\,ﬁ =0.707

8 =&
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0.153 The ares of a trangle formed by the tips of vectors 3, D and T s
e Tt b
{a) %ﬁa-u}.[ﬁ-ﬂ () E|[ﬂ-n}u.u[.:-u-.:-.].|
oo, ] 1= o=
) %|a:a:hxr:| () E[axb].c
[ME, GATE-2007, 2
Solution: (b) Markg)
Fom C, draw CN L AB. From righl-angled ACAN,

sin A = % = [CN| = |AC| sin A,

Area of AABC

S[Blx(oN
Lot e s =
= 5lAB|-|ACisin A = El.ﬁ.E:n: AC,

C{E)

i
L CH H Bin)
From above figwe, AH=h-3 and AC=c-3.

S, o tB-gix@-m| = M5-Eixm_z
Area of AABC EI'[TJ a)x(C a]l_ ELta h]xta—cﬂ
Choice (b}is comrect.

Q.154 Letxand ybetwo vectors in a 3 dimensional space and <x, y> denole their dot produes, Than
the datarminant dut[{ . :']
<YE> <Yy
(a) Is zeto whan x and v are nearly indepandent

(k) ?s positive when x and y are linearly independant
\e] is norezerofor all non-zero x and y

(d) is zerc anly when eithar x o yls zaro

Solution: (b) (EE, GATE-2007, 2 marks]
Lat 0= LS |
Ihr.:': '!"'!II'
Let £oe ke,
¥ o=, |+'_gr2|
X. X = ;1;'3 + 1?2
':ll'. '!,l = I:I'IF + YE‘E
K ':F - :{l 12 + I"‘] .!l'lg-
0= | }l:a,?-b}[;

My ¥a + Yy ¥a
Ky g+ Y Y, '|'.F-|-'|.I:;.E

U py caliiocdlliiiel
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= (%7 4 57 {y? + 9,2 - (X, %+ ¥,y Vol
= R Y By -2,y M Yy

= [:2 'ﬁ'll T I1 !I":':'P
Now, D=20
x? !'r'. = x| jl'? = ﬂ'
= ek
";g. :F?

= Vector x, | + X jandy, i+ ¥, | are lineary depandant,

Linear dependence = 0 =

50, Lineer iIndependence = D=0

I8, |5 nagative or positive.

Howaver, [notice that here since D = (%, ¥, = %, y.1%, it cannot be negative].
So, Linear independence = D is positive.

Q.155 The wo veclors [1, 1, 1]and [1, a, EE].whﬂr&E-l—%ﬂﬂ}ar&

2
{a) orthonomal (b) orthogonal
{c] paralled (d) collinear
[EE, GATE-2011, 2 marks]
Solution: (b)
Given [1,1, 1] and [1. a, a7
hence A== —%+j§
af = of
So the vectors we
u=[1,1,1j
ard v o= [1,m, 0f]
Mow uv = 1.1+ 1.e+ 1.0
m | &+ I:E‘F'=D

50 u & v are orihogonal,

4.  The vector that is NOT pearpendicular to the vectors {i + [+ Kl and (i + 2/ + 3&) Is .

(8) (i-2/+k) (B} (~i+2j-k)
{c) (O + 0j+ Ok) {d) (4i+ 3{+ 5k)
[IN, 2018 : 1 Mark]
Solution: (d)
We know that if 8and b are perpendicular
then g6 =0

options (a), (b}, (c) are perpendicular.
options (d) is not perpendicular.
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2.14.13 Vectorand Scalar Functions and Fields. Derivatives

This is the baginning ol yactor cakculus, whieh [Pwlves wo inwides OF Tuane 1B, v g I"“E"L'rﬂm

whose values arg veclors

v = w(P) = [Vl va(Ph v4iPl
gpace, and acalar furctions, whose values g scalars
I = I{F)

depending on P In applicalions, the domain of

depending on the points Fin
dtmition for such a function is aregion of spacy o ;

suMace in Space o1 a curve in Bpaca Wa say Ihat a veclon lunciion -.hirinm A Veclon held in iy
region (or on that surtace of cgve). Examples are shown in ligures Simdarly, & scalar funeqgn
gelines 5 scalar lield in aregion of on & surlace of 4 curve. Examples. are the lemperalure lieldm ,
body (scalar function) and the pressure fiald of the air in the earth's atmosphare. Vector |vasyy,
function) and scalar funclions may also depends on lime Loran furthwsr paramelons

Fraid ol 1angani veclons of & cune Figkd of mormsal victors of 4 surlnee

Comment on Notation. [ we introduce cartesion coordinates x. Y. 2, then instead of v(P) and {[P) we

can also write
win, 0, 2) = vty 2h valXy, 2), valxv.2)]
nel that a vector or scaar field ihal has a geomatrical or physcy

and I{x, y. 2), bul we keep in mi
he points P whare 115 defined but not on the particular choice o

meaning should depend onty on t

Caresian coordinates.
ILLUSTRATIVE EXAMPLES
Example: 1
Sealar function (Eucldean distance in spaca).
Solution:

The distance i(P) of any point P from & fixed point P, in space Is a scalar function whosd
domain of defintion is the whole space. () defines a scalar field in space. |t we introduce @
Cartesian coordinate system and P, has tha coordinales ¥, ¥,. Z, then fis given by the wd-

known formula

HP) = f'[l:l'-E]'=~.II{T-K¢}‘? -rt*p-y,;,]z +1,z—z,:,}5'

whare x, y, Z are the coordinates of P If we replace ine given Cartesian coardinate system &
another such system, then the values of ine coordinates of P and P, willin ganars change. bul
i{p) will have the same value as before, Hence f(P}is a scalar function The direction cosnes

the line through P and P, are not scalars becauss their valuas will depend on the choice of the

coordinate systar.
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Example: 2
viector field (Velocity field).

Solution:
At any instant the velocity vectors viP) of a rotating body B constitute a vector field, the so-
called velocity field of the rotation. If we introduce a Carlesian coordinate system having the
origin on (he axis of rotation, than

wix, % 2) = wxr=wx Xy 2] =wx(x+yj+ 2zk)

where x. v, Z are the coordinates of any paint P of B at the instant under consideration. If the
coordinates are such that the z-axis is the ais of rotafion and w points in the positive

Z-direction, then w = ok and
bk
v= 00 o =o-y+x)=wf-yx0]
Xy Z
An example of a rotating body and the corresponding velocity field are shown in Figure below.
Adgo shown is anothaer example of vactor field, the gravitational field.

: ¥
¢ “ s
- e O
1 - L
b 1
alacity Tl ::|1..3 LA By GArsvilasacrl felo

Vector Calculus: We show next that the basic concepts of caloulus. such as comvergence, continuity,
and differentiability, can be defined for vector functions in a simple and natural way. Most important
hare is the derivative.
Convargence: An infinite saquence of vectors a,. n=1, 2, ... is said to convarge if there is a
wector a such that
im 6 -8 = 0
a is called the limit vector of that sequence, and we writa
s b
fon i
Cartesian coordinates being given, this sequence of veclors converges to a if and only if the three
sequences of components of the vectors converge to the corresponcling components of 8.
Similarly, a vector function wt) of a real variable 1 is said 1o have the limit | as t approaches t, il vit)
is defined in some neighborhood of 1, (possibly except al 1,) and
lim |v(t)—4| = 0
fin Jwit)— 1
Than we write, ||Lnr1u wil) = |
Continuity: A vector function v(t) is said to be continuous al 1=, it it & delined in some neighborhoad
of t; and
lim wi{t) = viky)
1=lg
It we introduce a Cartesian coordinate system, wa may write
wit) = [wylthvalth, valtl] = v, (i + walth + yltik.

'Scanned by CamScanner



.
Scanned by CamScanner

238 | Engineering Mathematics for GATE and ESE Prelims MADE s
)
——

Then v(t) is continuous at L, if and only If its three componants are conlinuous at 1, We oW sty
most impartant of thesa definitions h

2.14.13.1 Darivative of a Vector Function
Avector function vt} is said to ba differentiable at a paint t il the fallowing

=Tl

wil = Alj

limit axists:
: vt -+ al) - wt)
WAl e =

axists. The vactor v{1) s called the darivative of (). See Figure abova
(The eurve in this igura is the locus of the heads of the Brrows reprasanting
v for values o the independen| variable in some inlerval containing  Derlvative of & vaciy P
Land 1+ At).

In terms of componenis wilh respect 1o a given Cartesian coordinale systam vil)is differentiabg o
a point 1 If and anly if its three components are ditferentiabla at 1, and then Iha darivative Il g

obtained by differentiating each companant saparately.
i) = [villh valt), valt]
it follows that the famiiar rules of differentiation yield corresponding rules for diffarentiating vegy,
functions, for example,
lev) = cv (¢ constant
U +v)" = U« v and in particular.
(UV) = U'v + UV
v = v+ uxy
fu vw) =2 Wy Wefuv w+lu v w)
Theorder of the vaclors must be carefully observed Decause cross mulliplication is nol commutalive

ILLUSTRATIVE EXAMPLES
Example:
Deasivative of a vactor funciion of constant length
Solution:

Lat v{t) b a vector function whose langth is constant, say, v(t)] = c. Then |~.r|2 = v.v = c*, and

() = vy v = v’ = 0, Dy differentiation. Tha yields (he following result. The daervative
of & vector lunction (1) of conslant length is either the zero veclor or is perpandicuiar o)

2.14.13.2 Partial Derlvatives of a Vector Function
From our present discussion we sae that partial differentiation of vector functions dapanding on two
or more variables can ba infroduced as fallows. Suppose that the components of a veciar function
Vom [V W vl S Ve v vk
are difierentiable funclions of n variablast,, ..., L. Then the partial derivative of v with respect 121,18
denoted by avidl, and is defined as the vector function

v vy, Vs, o
o Dy Dy Oy
R T T
oy

Pyt . aty
Similarly, Ay = W o aask and soon.
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ILLUSTRATIVE EXAMPLES
Example:
Let iy ly) = acost, i+asint+ 1k
Solution:
ar
Then T = —asin i+acosj
dr
FH;; =K

Various physical and geometrical applications of derivatives of vector functions will be discussed
in the next sections,

2.14.14 Gradient of a ScalarField

We shali see (hal some of the vector fields in applications-(not all of them) can be obtained from
scalar fields. This is a considarable advantage because scalar lields can be handlad more aasily,
Tha relation between the two types of fislds is accomplished by the “gradient,” Henca the gradiarit is
of graat praciical imporance

Definition of Gradient: The gradient grad | of a given scalar function ix, v, 2} is the vector function
defined by

al
1, gradf= EH EIT-'I +E|"~
Here we must assume that | is differentiable. It has become popular, perticularly with physicists

and engineers, o introduce the differential oparator.

3. 9 3
Va—l+r—|+—K

2 Vet %
(read nabia or del) and to write

af . af . af
gradf=Vi= H|+a—rj +EH
For instance, il f(x, v, 2) = 2% + y2 - 3y2, then grad { = i = 2| + (z - By)j + yk.
Wa show later that grad fis a vector: that is, although itis dafined In terms of componants, it has
a length and direction that is independent of tha particular choice of Cartesian coordinates. But
first we explore how the gradient is related to the rate of change of fin varous directions, In the
directions of the three coordinata axes, this rate is given by tha partial derivatives, as we Know

from calculus. The idea of extending this to arbitrary diractions seams natural and leads to tha
concept of directional derivalive.

2.14.15 Directional Derivative | o _
The rate of change of f at any point P n any fixad direction given by a vactor b is defined &s in
calculus, We denate it by D,f or difds, call it the directional derivative of f at P In tha direction of b,

and define it by figure.
3 Di= L - Iimw (s = distance between P and ()
B dg el 5

| whara () is & variable point on the ray C in the direction of b as in Fig. below.
| The next idea is to use Cartesian xyz-coordinates and for b a unit vactor. Then the ray C is

given by
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4. r(s) = (sl + y{s) + (sl =py +8b  (5200b|=1
(i, the position vector af ). Equation (3) now shows that 0.0 = diids is the derivaljy, of the
function i(x(s), v(s), z(s)) wilh respec! 1o the arc langih s af C. Henco, assuming h | &
continuous partial derivatives and applying the chain rule, We oblain 5
O

|" ﬂ
://' ¥
)
Dirpctional dorwallen

dl o I .
. Dylm—= =X+ —Yy'+—Z
et s
whera primes denate derivatlves with respect 1o 5 (which are takaen at & = 0). But here, ¢ < x4
y] + Zk = b by (4). Hence (5) is simply the inner product of b and grad [[see {2), Sec. §.2),
df
6. Dyf=— =bgradf il = 1)

=

Attention! In general, if the diraction is given Dy a veclor a of ary langih, then

| | - _ = g :
f=— =—agrad{ (where — is a unil vactor is direction of a)
R e A TT

ILLUSTRATIVE EXAMPLES

Exampla:
Gradient. Directional Derhvative _
Find the directional derivative of fix, v, z) = 27 +« 3y¥ + 2% at the paint P: (2, 1, 3) in Ihe

direction of the veciora = | = 2k,
Solution:
We oblain grad | = 4xi + 6yj + 2zk, and al P: (2, 1, 3), grad f = 8i + 6] + 6k

£
{3 o 1828 4
?Evﬁ--dﬂ-{ﬁwﬁuﬁk] =~ ="~

The minus sign indicates that f decreasas at P in the direction of a.

2.14.16 Gradient Characterizes Maximum Increase
Theoram. 1 (Gradlent, Maximum Increasea) _
Letf(P) = f{x, v, 2) ba a scalar lunction having continuous first partial derivatives. Then grad fexiss
and its length and diraction are independent of the panicular choice of Cartesian coordnales In

space. If al a point P tha gradiant ol f s not Ihe 2ero vector, It has the direction of maximum ingreasé
of f at P. Proal. From (&) and the definition of inner produst wa have
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where yis the angle between b and i £, Now s a angent p i
scalar function. Hence its value g a point P depends on grad | - .J'I

P but not on the particular chaice of coordinates. The wﬂ - c ;

same holds for the arc length & of the ray C (see hence
also for Dyf. Now [7) shows that D,f is masimum whaen

cos =1, Le y= 0 and the D= Erﬂﬂq It fallcrs Cradient a= gurlaca normal vackor
that the length and direction of grad { are independeni

of the coordinates. Since y = 0if and only if b has the

direction of grad f, the latter is the direction of maximum

increase of f &t P, provided gradfz0atP

Gradient as Surface Normal Vector: Another basic use of tha gradient results in connection
with surfaces 5 in space given by
B. fix. v. Z) = c = const.
as follows. We recall that a curve C in space can be given by
k] i) = withi + yith + z(t)k
Now it we want C 1o lle on 5, its components must satisfy (8); thus
10. Hxdt). yit). 2(1)) = o
A tangent vector of C is
Fit) = 00 + v+ 21k
If C lies on 5, this veclor is tangent to 5. Al a fixed point P on 5. thesa langent vectors of all
curves on S through P will generally form a plans, called the tangent plane of S at P (Figure
abova). Its normal (the straight line through P and perpendicular to the tangent plane) & callad
the surface normal of S at P. A vector parallel 1o it is called a surface normal vector of S at P. Now
if wa differentiate (10) with respact to t, we get by tha chain rule.
o, o
11 E X+ E
This means orthogonality of grad { and all the vectors r' in the tangent plare. This resultin shown
pictorially in the figure above, where grad [ is shown as normal o langent plane of vectors r'.

S0, wa have the theorem 2 given below

Theorem. 2 (Gradient as Surface Normal Vector)

Let | be a diflerentiable scalar funclion that represents a surface S: (. v. 2) = ¢ = const. Than if the
gradient of f at a point P of 5 is not the zero vector, it is & normal vector of 5 at P,

Comment. The surfaces given by (8) with various values of c are called the level surfaces of the

H ]
T*EI = {grad fir' =0

scaiar function f
ILLUSTRATIVE EXAMPLES
Example:
Gradient as Surface Normal Vector

Find a unit normal vector n of the cona of revolution 27 = 4(x* + y°) at the point P; (1, 0. 2).
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Solution: .
The cone is the level surface f =0 flx.y.2) = 4(x + y?) - 2%, tus

grad | = 8xi + Byj 22k and atP(1,0,2) grad = Bi- 4k |
Hance, by Theorem 2, grad fis a nar mial vectar of the cone at point P aw a unit normal vectee

at paint P will be,

n = i grgd f= & == 1 k
i }grad | :I'g :'FE
and tha other one is =n.

2.14.17 Vector Fields thatare Gradients of a Scalar Field (“Potential”)

Same veclor fields have the advantage that they can be obtaned from scalar flelds, which canbe
handied more easily. Such a vector field is given by a veclor function w(P), which is oblained as the
gradien of a scalar function, say, v(P) = grad f{F). The function f(P) iz called a potential functionaora
potential of wiP). Such a viP) and the coresponding vector field are called conservalive because
in such a veclor fields, energy is conserved; that is. no energy is lost (or gained) in displacing 2
bedy (or a charge in the case of an electrical field) from a point P 1o another polnt in the field and

back o F.

2.14.18 Divergence of aVector Field

Vector calculus owes much of its imporiance in engineering and physics o the gradient, divergance, and
curl, Having discussed the gradient, we tum next (0 the divergence. The curl folliows in next sacion
Leat vix, y, z) be a differantiable vector function, where x, y. z are Canlesian coardinales, and ket v, v,
v, De the COmponents of v. Then the functicn

_
1. vy = ﬂn+513.f+.—}z

iz called the divergence of v or the divergence of the vector field defined by v. Another commaon
notation for the divergence of vis V.v,
divvy = Vv
- [Hr_ll +%j+%k }{'-.r.|i+ Waj+ Wgk] = % +%3- +%_‘1
with the undarstanding that the “product” (/@x)v, in the dot product means the partial derivalh®
iv,@x, elc. This is a convenient notation, but nothing more. Note that ¥.v means the scala’ g,
wharaas, Vf means the vector grad {.
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ILLUSTRATIVE EXAMPLES

Example:
” Vo= 3+ 2uy) - yadk,
then divy = 32 + 2x - 2yz
We =ha'l see Delow thai the divergence has an important physical meaning. Clearly the values
ot a function that characlerize a physical or geometrical property must be independent of the

particular choice of coordinates; thatis, those values must be invariant with respact lo coordinate
iransfommalons

Theoram. 1 (Invariance of The Divergence)

The values of div v depend onfy on the points in space (and, of course, on v) but not on the particular
choice of the coordinates

Mow. let us furn ta the more immediate practical task of getting a fee! for the significance of the

drvargence.
Iffix. y. 2} s & twice differentiable scalar function, then
A, af. dl
gragdi = EH.ET"'HEH
; #t o 2%
and divigradf) = —+ i
: o atar

2  The expression on the right is the Lagiacian of 1. Thus
divigrad f) = Vi

ILLUSTRATIVE EXAMPLES

Example: 1
Gravitational force
The gravitational force p, is the gradient of the scalar function f(x, y. Z) = cfr. which satisfias
Laplace’s equation V3 = 0. According to (3), this means that div p = Oir > 0)
The following example, taken from hydrodynamics, shows the physical significance of the
divergence of a vector field (and mare will be addad in next section when Ine so-called dvergence
theoram of Gauss will be availabile).

Example: 2
Motion of 8 compressible fluid, Physical meaning of tha divargenca
We carsider the motion of a fiuid in a region R having no sources or sinks m R, tt is, no poinis
at which fiuid is produced or disappears. The Concap of fluid state is meant to cover also gases
and vapors. Fluids in the restricted sense, o liquids (water or o, for instance), have very small
compressibility, which can be naglected in many problems. Gasses and vapors have large
compressibility, that is, their density rl= mass per unit volume| depends on the coordinates x, v,
z in space {and may depend on lime 1). We assume that cur fluid is compressible.
Wa cansider the flow through a small rectangular box W of dimensions Ax, Ay, Az with
edges, parallel to the coordinate axes {Fi'.;' below). W has thu_e volume AV = Ax Ay Az Lat
v=[v, Vs u:!] = Wi+ Vi, vqk be tha velocity vactor of the mation. We sat

——_—— e ———— - . = =

E
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2. U pv = [y, Uy, Uy] = Uyl + Uy + Uk and assurne that u

angd v are continuously differentiable vector functions of
%y, . and | {Ihal s, thay have lirsl partial cierivalives,
which are continuous), Let us calculate the change in As
the mass included in W by considering the flux across . g ﬁ@
the boundary, that is, the tolal loss o mass leaving W
par unit time. Consider the flow through the left face of g N
x

W, whose area iz Ax Az. The componanis, v, and v, of v
are paralle! 1o that face and contribute nathing to this
flow. Hence tha mass of flud entering through that face
during a short lime interval At s given approximalaly by
(pvg), AXAZAL = [u,), i A2 A,
where the subscript y indicates that this expression refers 10 the lefl face. The mass of i,
leaving the box W through the opposite face dunng the same tme interval it approsmate,
(Ug)y gy A% AZ AL where the subsCripty + Ay inclicalas that this expression relers 10 the right far.,
{which is not visible in Fig. above figure). The dillerence

Flognicad nbar prataln of i Ul-‘mw,‘#

Au
Au, Ax Az A1 = ﬂ—’b'u’ Al [ Buz = uz), ., - fu}, |
F

is the approximate loss of mass. Two similar expressions are obtained by considering ihe offe
two pairs of parallel faces of W. If we add these three expression. we hind that Ihe total koes of
mass in W during tha time interval At is approximalely

[ﬁ+£ﬂ+mﬁ]‘ﬂqﬂl
Az

Ax Ay
where, Au, = (U, ac— i),
and Au, = :”ﬂz-u_tuﬂ:
This loss of mass in W is cause by the time rate of change of the density and s thus egual 1
-84 A
Al

If we equate bolh expressions, divide the resulling equation by AV Al, we gat

Buy Aup Aup P

A Ay AZ Al

MNow wa lal Ax, Ay, Az and Al approach zero & gel,

divu = divipy)= 4%

3 Le %E.-*'Eﬁ""l'.-l-'ﬂ'] =0

This important relation is caled the condition for the conservation of mass or the continuly
[ equation of a comprassible fluid flow.

If the flow is steady, that is, independent of time, then B = 0 and the continuity equation &

i
4. div (pv) = O
If the density r is constant, so that the fluid is incompressible, then equation (B) becomes
5 divy = 0

oCaliicu vy calliovalici -
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g

This relation is known as the condition of incomprassibility. It expresses the fact that the “_a““":ﬂ
of outflow and inflosw for a givan volume element is zero at any ima. Clearly, the assumption thal
the flow has no source or sinks in B is essential to our argumenl. ,

From this discussion you should conclude and remember that, roughly speaking, the divergence
rreasuras outflow minus inflow. _

If v denotas the velocity of fluid in a madium and i diviv) = 0, then the fluid is said to be
Incompressible. In electromagnetic theory, B diviv) = 0, then the veclor field v is said 10 be
solenoidal.

2.14.19 Curl of aVector Field

Gradient, divergence, and cur ate basic in connechon with fields. We now define and disCuss the curl,
Lat ¥, ¥y, Z be right-handed Cariesian coordinals, and lei

VX ¥ Z) = vl # Vg + VK
ha & differentiable vector function, Then tha lunction

OB AW L L
{:unvu[-ﬂi-ﬂ}*[k Eﬁt]‘+[ﬂ':{ y

i called the curl of the vector function v or the curl of the vector field defined by v. . .
Instaad of curl v, the notation rof v is also used, (since one application of curl is to signify rolatan of

a rigid body)
ILLUSTRATIVE EXAMPLES

Example: 1 _
With respect to right-handed Cartesian coordinates, let
v o= yzi + 3zn + TH

Then (1) gives
Vo

i ] k
a 8 @
ax oy o2
yz 32X 2
- 3%+ yj + (32 - Z)k = 3xi + ¥} + 2zk.

curly

The curi plays an important rode in many applications. Lel us illustrate this with a typical basic
example. (Wa shall say mare about the role and nature of the curl in next saction).

Example: 2
Rotation of & rigid body. Relation to the curl
Rotation of a rigid body B about a fixed axis in space can be described by a vector w of
magnituda wm in tha direction of the apds of rotation, whera w{> 0) is the angular speed al the
rotation, and wis directed sothat the rolafion appears clockwise if we look in the direction of w.

The velocity field of the rotation can be representad in the form

- AU TR TR MYy il vnL e
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= W'l
where t is lhe position vector of 8 moving
hawing the origin on the axis af rolation,
such thal

point with respect to a Canesian coordinate Systam
Lat us choose right-handed Canasian coormes,, .

w = mhandr=x+yj+ZK
that is, the axis of rotation |s tha z-axis. Than

I j k
Wo= WH = 00w = —flyl + 01X
X y Z
i | K
i a4 d
and therafore, curly = F” E = = 20k,
-y X Dr
SiNce W o= ok,
2 curlv = 2w

Hence, in the case of a rotation of a rigid body, the curl of the velocity field has the direction pf
the axiz of rotation, and its magnitude equals twice the anguiar speed wof the rmgnun.
Nate that out result does nat depend on the particular choice of the Cartesian coordinate system

in space.

For any Iwice continuously differentiable scalar function f,
3 curl {grad{) =
as can easily be verified by diract caloulation, as shown below
Fl ﬂi E!Ifk
gradi = ™ I+ ay] e
| i Kk
IR L 4
curlgradf) = |dx dy o2
a o o
o ay o
O S ) [ [ﬂEf i O I
i '[m'ayTz e axaz g Py

= 0i-0/+0k=0
Hence if a vector function is the gradient of a scalar function, its curl is the zero vector. Since the
curl characterizes the rotation in a field, we also say more briefly that gradient fields describing
a maotion ara irotational, (If such a field oceurs in some other connection, not as a velocity fiehd,
it is usually called conservative;
I curl v = 0, than v I8 soid 1o be an irctational fielg,

ILLUSTRATIVE EXAMPLES

Exampla:
The gravitational field has curl p = 0. The field in the rotation of rigid body example this secton
18 not imctational since we saw that curl v = 2w 2 0, A similar valocity field is optained oy
stirring coffes in a cup.

"Scanned by CamScanner
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Other than (3}, anot
har key formula for any twice continuously diffarentiable scalar function is
4 ) div (curlv) = o
Itis plausible because of the interoratation of

the curl i i
A proof of (4) foliows readily from the definiti e i Lo grems A,

ad : ong of curl and div; the six terms cancel in pairs.
Wi 'n".ll-|-'u|2.|-|-l.|3|-g
I I k
cuiy = |9 9 @
% dy dz
LAT PR
. .[ﬂa_ﬂ_fa TR TR Y P
& & dz ax oy
divicurlv) = i[ﬂa_ﬂa _1[3'_“1 vy ), B[ v
iy az | oyl ox 22 ) 3zl ax oy

T‘.r'ra l_::q_.:ri is daf_inad in terms of coardinates, but if it s supposed to have a physical or geometrical
signdficance, it should not depend on the choice of these coordinates. This is trua, as follows.

Theorsm. 1 {Invariance of The Curl)
The langth and direction of curl v are independant of the particular choice of Cartesian coordinata
SySElEMms INn space,

2.14.19.1 Important Repeated Operations by Nable Operator (V)

. 7t # A
1. divgradf=V2= Ttz —y
% F dZ

curlgrad f= V= ¥f=0

diveurlf= P-(VxFl=0

curl curl f = grad div F - V2F = V(¥ - F) - VoF
graddivf=culcurl F+ VF = ¥ xV xF+ Vi xF

th &t p

ILLUSTRATIVE EXAMPLES FROM GATE

Q.166 The directional derivative of i{x, v, z) = 2% + 3y + 2% al the paint P2, 1, 3} in the direction of
heveciwa=i=-2kis

{a) —-2.785 (b) —2.145
ic) -1.780 {dy 1.000
[CE, GATE-2008, 2
Solution: (c) el

2+ 3y + 25 P21, 3),a=1-2k

of A T
?[='E+|E+kﬁ=q"+ﬁw*’h“

gcannea' By Camacanner o
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¥l = dx.ﬂxl+ﬁﬂtij+2?i:ﬂkk=ﬂl+ﬁ]+ﬁh
atP{2 1.3 1
i ] i -nfhndn'scllnnurvecuf
directional derivalive i i5

» .3
hothing but the component of gradf in the direclion of vector a and is given by &7 arag
ing bu

] (8i + & + Ek)

=2k
e+ i-27

4
L (18+06+(-26) = Tz =-1.789

=5
Q157 Aveiccity vector is given as 7 =Syl + o’ + 3yz’k . The divergence of this velocity veciar g
(1, 19_13 is e
b {d) 15
o (CE, GATE-2007, 2 marks|
Solution: (d)

y = Swyi+ zﬁj+3yﬂ=u1l+v?j+v!h

aiv (V] dvy I, Mo _ gy 4 4y + 642

= dx dy dz

at(1.1,1) div(V] = 5.14414611=15

0.158 Potential function ¢ is given as @ = 2 = % What will be the stream function {y) with the

condition y=0atx =y =07

fo) »® +y*
:{21: fﬁf’- (d) 2x2y* [CE, GATE-2007, 2 marks]
Solution: {a)

Strearn function, y = 2xy
0.158 For a scalar function fix, y. 2) = 2* + 3y? 4 227, the gradient at the point P(1, 2, - 1)is

(a) 27+6]+4k D) 2i+12j-4k
(c) 27+12]+4k (@) J56 [CE, GATE-2009, 1 mark]
Solution: (D)
f = %%+ 3y + 222
a A A
A = gradf=]— +j—+k—
gr Iaﬂ+]ﬂ':|l+ =
= i(2x) + jEy) + kidz)

The gradient at P{1, 2, -1} is

2% N+](Bx2) +k(4x-1)
2i + 12) - 4k

-
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0.160 For a scalar function 1(x, y, z) = % + 3y¥ + 227 the directional derivative ai the paini
P(1, 2.~ 1) in the direction of a vector 7 - |+ 2k ia

{a) - 18 b) —3J6
fc) 38 (d) 18 [CE, GATE-2009, 2 marks]
Solution: (b)
ol of o

. SIS P RO 5 IR

A 1Ex+|3',r*hﬂz
here f= H”+3f3+2.:?
Al = I[2x) + j(By) + k(4z)
atp(1,2,-1) Af = 2% 1)+ j(Ex2)+ k(4 x-1)=20+ 12~ 4K

The direchonal derivative in direction of vector a = i — | + 2 k is given by

a =+ &
m.giﬂdf = ﬁ%ﬂ?r;?.{ﬁ+1gj—4k}

. .—JI%H.EH[—‘I:}.FE-FE:-d} - -%% =-3J6

0.181 The directional derivative of the field Wy, ¥, 2) = ¥ - 3yz in the direction of the weclor
(T+]=2k) at point (2, = 1, 4) is
[CE, GATE-2015 : 2 Marks, Set-I]

Salution:
uix, p 2) =2 -3yz

Vu = 24 — 32 — 3k
Vil o g = 4 +12] -3k

(0 12 -of)- D=k A2 BL 2

Diractional derwvativea,

= —?"—I'g =-57T15
3
Q.162 Equation of the line nomal to function f(x) = (x-8)% + 1 at P(D. 5) is
(@) y=3<-5 (b) y = 3x +5
' €l 3y=x+15 (d) 3y =x-15
I [ME, GATE-2008, 2 marks]
f Salution: {b)
| Given fix) = (x-8)23 + 1
[ 2 -
f = S(x-gyve
) 3 (x—8)
| 2 -3 1
Slope of tangant at point (0, 5) m = 5‘[‘““3} =3
1
Slope of normal at point (0, 5) U= 3

'
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o
Equation of normal at paint (0, 3)
y-5 = 3(x-0)
= y = 3x+ 5

Q.163 The divergence of the vector field {x g} +ly-x)j + ey z)k B

(a) O {b) 1
c) 2 {d) 3 [ME, GATE-2008 1 mark)
Solution: (d)

- o0 LT WL S
div il -} + (- K]+ (e y + 2K ) =36+ 1Y Kb (X 4y 42)=3

0Q.184 The directional derivative of tha scalar function e,y 2) =% + 2y" + zatthe point P= {1 1 2

in the direction of the vacior a=3i-4] &

(@) -4 o) -2

(c) 1 id) 1 [ME. GATE-2008, 2 markg]
Solution: (b)

gradt = gﬂ%“%k =i+ dyj+ K

at point P{1,1,2), gradf = 2i+ dj+ &
MNow directional derivative of f at P(1, 1, 2} in direction of vector a = 3i— 4j is given by

|%l{:rau::u = [3* 4 ) (2 tj+h)

L

liap-4.440) = -2
5

0.185 The divergence of the vector field Axzi+ Pay] - yzok at 2 point(1,1.1) is equal to

(@) 7 (o) 4
le) 3 () O [ME, GATE-2008, 1 mark]
Solution: (c)
Viectar field, T o= Sziedny]—y22k = wi+vgi+vgk
Divargenca of vector field
| _ovy i, Ny
Divil) = V.I= ax+a~_.- + .

2 (el u-{2w]+—[—23f:"] =22 420~ 2
oW ()1 1y = 31)+2(1)- Zann-

0).186 Velocity vector of a flow fiald |s given as V = 2xyi = ¥%z] . The vorticity vector at(1, 1,118
fa) 4i-j ) 4i &

c) 1-4 (d) §_ak
{ | i i s —

mlllcu Uy ANTTOUVATITICI] r1
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e
golution: (d)
Velocily vactor = G=E-W-I—R=Ei
The vorticity veclor = curl {valocity vector)
= curl (V)
R
= yxj=|2 2 @
gy oz
2y %z Q

[E%tﬂ} - %{—Izz]]T ‘[%{“’ —%:?:q}]T P [%{—:-Fz] 4 %rzw}]ﬁ
w4 -2z - 24k

ar{l, 1, 1} by substituling x = 1, yalandz=1

we get, vorticity vacior = | - dk

CL16T For the spherical surface =@ + Ve 4 22
[:%j‘;ﬂ] IS given by
1= 1=
(&) Yl e { i) 1 ¥ 1=
2 EE
C) K

= 1, the unit outward narmal vector at the paint

T2 12 18
¥} ?EH\_JEJ-‘-ER
[ME, GATE-2012, 1 mark]
Solution: (a)
:!:2+'=,I'E+EE: 1
. v 2) = ¥ +y?+22_ 1= 0

i
l
+
15
'I'
I
ol

grad f

1}

2]+ 2y |+ 22k at[;}?:}i.u}
27 27 . .
gradf = ET+:E|-|.+E::G:-:I{ = 2442 +0k
|gradf] = J2+2=J4=2
j The unit cutward normal vector at point P is

- = 1.5 .
> |gradl1rgrﬂdﬂ'": 2{&"""‘@]] :E"*'J'Ei
Q.188 Curl of vactor Wx, v, 2) = 248 + 32 + Whkatr=y=2z=1Is
(a) - 3¢ (b) 3i
©) -4 (d) 3i - Bk
[ME, GATE-2015 : 1 Mark, Set-2]
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Solution: {a)
i Kk
a @ @
Curl of veclor = =0 ﬂ Iz
ped 37 ¥
= :{%{m {% (3 J] = I[%lyﬁ} h*'; [Ex:'a] + k[;%{:ar‘ }%—te ﬁl :
= |3y - 6z] - f0] + KO+ 0] I
|

Atr=1, y=1andz=1
Curl = (3% 18 -6x1)=-3
aiuad scalar function and ¥ be an arbilrary Smooth vaciy

(1.180 Let 4 be an asbitrary sinooth real v
ongl space. Which one of the following is an identity?

yalued funclion in & thres-dimeansi

(@) GurliV)= V($OWV) b} W =0
{c) Div CunlV =0 (@ Div [47)=eDiV
[ME, GATE-2015 : 1 Mark, Sex3)

Solution: (c)
Div CurfV =0
& (g) is carrect aption,
2

Q.170 Fer the scalar figld u = % - % _magnitude of the gradient al the paint (1, 3) is

13 g
@ g (b} ,'l?g" |
g
© 5 @ 3 [EE, GATE-2005, 2 mark:]
Solution: (&)
Wy
U= E + --é-
E-d = I‘::I-—L[ -E= i E ¥ E
grad u Iﬂ:l!+l3'!,|' J'il-l—ﬂ'g'l |
pe s, 8 It
Al1,3), gradu = “:'H[ﬁ'l]l =i+ 8 |
|gradu| = 422 =45
Q.171 Divergenca of he three-dimensicnal radial vector figld T Is
(@) 3 b)
(€ i+]+k (d) 3{i+i+r¢j
 qATE-2010, 1 mefd
Solution: {a) JEE2

F = H?+Fj+z|;

THh
¥
B

Scanned by CamScanner
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g
dvr = v.r
- [T%q%&%].{xiwjmﬂ
rE

@.172 The curl of the gradient of the scalar field defined by V = 2xly + Iy?z + 4z%xis

(a) 4xya, +6yza + fzxa, (b} d4a, + Ga, + Ba,
(6) (axy+dzflm, + (2" +Byz)a, + (37 + Boja,  (d) O y [EE, GATE-2013, 1 Mark]
solution: {d)
Curl of gradient of a scalar field is always zero.
V¥V =0

Q.173 Vx V=P, where P is a vector 15 equal to

(@) PxVxP-vip (b} VP +V(VxP)

€} VP+VxP () 'Fl['i?aF']"i‘?P
[EC, GATE-2008, 1 mark]
Solution: (d)
From property of vecion riple product.
Ax(BxC) = (AC)B-{ABC

and putting, A=V, B=V & C=P

We get, VveVup = (VP)V-(VVIP=V(VP)-VP

Q.174 The divergence of tha vector fiald A=xd_ 4+ ya, + zd,is

(8) © (b) 1/3
© 1 () 3 [EC, GATE-2013, 1 Mark]
Solution: (d)
ki &AF_'_EJE,_*aA‘,
v-A = Shete
VA= %[HH%MH%{:}:IHH
v-A =3

0.176 Funclion f iz known at the foflowing points
® o loaloglo2]|12|15(18 2112427130

i(x) | 0 o.08]0.36/0.81)1.44/2.2513.24)4.41]5.76]7.29)9.00)

The value of I:f{x}d: computed using the continuous &t x = an

{a) 8983 s
(d) 9.045
fc) 9017 [CS, GATE-2013, 1 Mark]

Scanned by CamScanner



254 | Engineering Mathematics for GATE and ESE Prelims

Solutlon: (d)

fir]

Y f-ﬂ___,_—

(1 EE—— :
DAY -~ - b; C :

Araa of region a is

1 1
=3 ¥ basa = haight = 5 w 008 = 0.3

Area of ragion b is
k.
2

1
xheight*{basal +hase?d) = > % 0.3 (009" 0.3g

2 1
J e = % (0.3) % (0.08) + % (0.3)  (0.09 + 0.36) + -~ +5 (0.3) % (7.28+9.0)= 5045
o

option (d) is corract.

Q.178 The direction of vector A is radially cutward fram the arigin, with | A ] = k" whare 2 = 4 sy ot
and k is a constant. The value of n for which V. A =0lis

(@) -2 ey 2
(e) 1 (d) O [IN, GATE-2012, 2 marks]
Solution: (a)

|A] = k"

= A=k T
:

YV -A= ?.mndf-]:D

We have, V. ($A) = (Vip) - A+ p(V - A)

h:[wf"'}-hf""w. FJ] -0

H.[fn—f}ln'agf*ﬁfﬂ'll] =0

fn=-1)/ %2 4+3rm-"'=0
[{n—i}-rﬂ-]l‘r" =0
A= -3

Q.177 Fora vector E. which one of Ihe following statements is NOT TRUE? _
(a) If V-E = 0, Eis called solenoidal {b) If ¥ x E = 0. E is called consenvalve.
() ¥ x E =0, Eiscalled irolational. (d) If V-E = 0, E ig called irrotational.
[IN, GATE-2013: 1
Solution: (d) o
Option (d) is not true as imotational vector has cross product as zero, Thus for vector 10
irrotational V x E=0

¢
&‘(JIIIICU lJ_y waliliouval i ici —J f"
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| PREL The magnitude of the drectonal desvative of the function flx =t o B B R ol

o he Circle v+ =2 atthe pomt{1. 1} =5

(a) 442 ) 5.2
ic} 72 d) 943 [IN. GATE-2015 : 1 Mark]
Eduli-m:{a}
A v m o 4 34
0=r + -2 arapomt P=si1 1)
mHormal taihe surlace
R - % -
Ya= T | —— * oW
'rl-.t Iﬂ]r' SN +2)
‘i’nEJ,p.. = E,|+_E‘II:

the normal vectors 3=27 + 2

Magniude of directonal denvabve of falong @ at(Y. Vis= T.4. 3
--af At
Vi i '_H—+ | ?— =
i dy
vi 11 = l?‘- "'EI

= -.:"1+'1=E'-.'E
2

Eﬂ- - E}',l

il

i-= E'_*._;_*.."_
a2 %
- Magnitude of directional derivative
: T 'I-.*; E"‘E B =
‘E "E} = =.Ii
= ["E"] . G e

(1.179 Which one of the loliowing is a property of the solubons 10 the Lapiace equation:
Tr!r =07
{a) The solubons have neither mAXIME TOF minima anywhers axcepl at the boundaries
{0} The solutions are not separable in the coordinales.
(€] The solutions are not conlinuous

(dl The solutions are not dependent on the boundary conditians.
[EC, 2016 : 1 Mark, Set-1]

Answar (a)
21420 Vector Integral Calculus: Integral Theorems

1.14.20.1 Line Integral o y——
The concept of a line integral is a simple and natural generalization of a definite integral

j ]'f![x] dx known from calculus. In (1) we integrale ihe integrand {x) from x = a along the x-axs 10

x = b, In a line integral we shall integrate a given function, called the integrand, along a curve Cin
space (of inthe plane). Hence curve integral would be a bafter ierm, bul line mtegral is standard.

We represant the curve C by a paramainc representalion.
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| = x{0)l + yith + 2k {astgh) \
ating. A : rja)ils indial point, and B: r{k) -

il tarmiinal point. G is now arierted. The direction from AloB, in
which 1 increasos, Is caolled the positive directon on C. We can

indicala (he direclion by an oIrow {as in above Figure {a)) The 'y
paints A ard B may coincide (as in above figue {b)). Then Cis (A i
Orarted cuna

eallad a closod path, :
& tangent at each of its points whose direction varje.

Wo call G a smooth curve if G has a anicu .
continuously as we move along C. Technically : C has a represeniaiion (2) such that sy
dillerentiabie and the derivalive ri{l} = dw/dt is continuous and diflerent from the zero vecta 5

evory paint of C.

201 = [xlt), wil), 2(1)
Wo call G tho palh of infeg?

2.14.20.2 Definition and Evaluation of Line Integrals
A ling integral of a vector function Fir)over acurve Cis defined by

o d
s with dr = [dx, dy, dz] and = dfdt, formula {3} becomes

[Fir-dr = [(Fyi+Foj+ Fak). (ol +ly [ +diz k)
LE| &

b cir
3, !F[f}-dr - ijm-—[m

In terms of component

3%
b rl
= _IF1d1+dey +Fdz = L F¥+FRy+FHZ)
&
If the path of integrating C in (3) is a closed curve, then instead of
Iw& also write |§ :
C C
Wa see {hal the integral in {3) on the right is a definite integral of a function ol t taken over the
intervala < t £ bonthe t-axis in the positive direction (tha direction of increasing t). This cetinig
inlegral exists for coninuous F and piscewise smocth C, becausa this makes Fr’ piecewiss
conlinuous.
ILLUSTRATIVE EXAMPLES
Example: 1
Find tha value of the line integral (3) when Fir) = [- v, —xy] = -yi - xyjand Cis the Clrcular &rc
as from A to B shown in figure titled Example below:
Solution:

Wea may represent C by
) = [cost, sint] = costi + sin tf (0gl<n2)
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Thus F{k{l} = cos 1, w1} = sin 1, 5o that
) = —yiti-x(t)y(t) = [~sint.~ cost sint] = - sint | - cos 1 sin t ]
By differantiation, F{t) = ~sinti+cost I
b
dr
So by (3) !me = HIF{r'HH it j;'“:-aimi-nmminu}{—aintnnaatﬁm
= | ™ (sin t - cos” tsintjdt
= ]u':"m,'air‘n2 b —_[:: cos® t sintdt
= J;ﬂ [1—_.@][[[ - J'ﬂu? el (where u=cost)
2
= [Z_ g1}~
(i)
Example: 2

Lina integral in space.
Evaluation of line inlegrals in space is practically the same as itis in the plans. To see this, find

the value of [3) when JF[THT = [Z, %, ¥] = 2@ + xj + vk and C is the helix (Figure abova fitled

Example 2) rt) = [cos 1, sint, 3t] where 0 <1 <25
Sabution:
We have x(1) = cos 1, vit) = sint, z(1) = 3. Thus
Fir) = 2 + %} + vk = 3i + cas i + sin tk
JFuttidr = [Fotoniet

j:f‘iatt + CO8 | + sin K).{~sin 1 + cos tj + 3k)dt

= ]f‘n:—ﬂtslnl+cuszt+salnl}rzl1

= Bm+x+0=Th
= 2194,
1. Choice of representation : Does the value of a line integral with given F and C depend on the
particular choiee of a rapresantation of C? The answer i no; see theorem 1 below.
2. Choige of path : Does this value change if we integrata from the cid paint A to the old paint B
but along anothar path. Tha answer is yes, in genaral; 5es example 3,

Exampile: 3
Dependence of a lina integral on path (same endpoints)
Evaluate the line integral (3) with F{r) = [5z, xy, ¥°z] = 5zi + xyj + x¥zk along two different paths
with the same initial point A:{0, 0, 0) and the same terminal point B:(1, 1, 1), namely (Fig. below
titled example 3)

(a) C, : the straight-ine segment r (tj={t. L t] =ti+ 1 + th. O<tg1, and
{b) C,:the parabolic are rit) = [t 1, 1°] = ti + tj + 1%, 05t 1.
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Solution:
{a) By subatituting r, inta F we obiain Fra(1)) = [St, 12, 1] = 5t + Y] + Pk We also neeq
r, = [1.1,1]=i+j+k

Hence the irtegral aver G, is
J'{EH!E'H"‘}:H e L

iF{rJﬂc
2 3 4 12

f (k) Similarty, I:r:.r substituting r, into F and calculating r'; we obtain fior the integral oves the palk

G,

[Pt e = J '(5ti+ 7]+ %K)+ -+ ke

Ll

1. 1 A

= 2 o0 - 2,1,2_28
]' Fir)-dr = jF[rE[t}]r'tt}l:li j:sth: + 2%l *3*.3 >

The two results are different, although the endpoints are the sama. This shows that the
value of a line integral (3) willin general depand not anly on F and on the endpoints A, B of
the path but also on the path along wihch we integrate from A to B.

Canvwae find conditions that guaraniee independence? This is a basic question in cormection
with physical applications. The answes is yes, as wa show in next seclon.

2.14.20.3 General Properties of the Line Integral (3)
From farriliar properties of integrals in calculaie we obtain coresponding formulas tor line integras.

[Fdr = i Far (k constant]
[ F+Gar o [ Fdrs+ [ Gor

[Far = [ Far+ [  Fdr

where in third formula above the path C is subdivided into two arcs C, and C,, that have the SEME
orientation as C (Fig. below). In (second formula above) the arientation of C is the same in botf
integrals. If the sense of integration along C is reversed, the value of the integral ls mulliplied by -1
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2.14.204 Line Integrals Independent of Path

Y

[ Flnge _ J < (Fitx + Focly + Fydz)

.H-E bafara. In [” We int&graia from a paint Atoa point B aver a path C. The value of such an
nh.&gral generally "-_ZlEDBm:Is notonly on A and 8, but also on the path C along which we integrate.
:I'I'IIE was shown in examgple 3 gf he last section, It raises the question of conditions for
I"IEHFE‘II'ICHF'ICE of path, so that We gel the sama value in integrating from A to B along any path
C. This is of great practical importance, For instance, in mecharics, independence - | path friay
Hﬂ::ﬂﬂ:f::dwrt::wmmma same amount of work regardisss of the path to the mountaintop, be
. pariong and genile, or that we gain back the work dane in axtending an slastic
spring wl"r&!'i we reiease it. Not all forces are of this type - think of swimming in a big whirlpool,
We define a line integral (1) to ba independent of path in a domain D in space if for every pair of

:r;pninm A B1inDitheintegrai (1) has the same vaiue forall path in D that begin at A and end

A very practical criterion for path independence is the following.

Thearem. 1 {Independence of Path)

Aling integral (1) with continuous ., F,.F;ina domain O in space is independent of path in Dif
and only it F = [F,, F,, F,] Is the gradient of some function { in D.

2. F = gradf;
in companants,
; ol il a
2 5 F. o = = — | S
1 a}! L] FE -n'"!,f ' k| az
ILLUSTRATIVE EXAMPLES
Example: 1
Indepandence of path. Show that the integral
_[:F-clr = J'E{E'xd:{ + 2ydy + 4zdz)
s Independant of path in any domain in space and find its value if C has tha Initial point
Az (0, 0, 0) and terminal point B: (2, 2 2).
Solution:

By inspection we find that
Fou [2% 2y 42] = 20 + 2y] + 42k = grad |,

where S
(If F is more complicated, proceed by integration, as in Example 2, below.) Theorem 1 now
implies independence of path. To find the value of the intsgral, we can choose the convenient
straight path

C: ) =[tLy=Hi+j+k), D<st=2
andgetr, =i+ | +kthusFr=2t + 21 + 4t = 8t and from this

[ exdx+2yoy +dzde) = [ Fret =dlt[ Btdt=16
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Proof of Theorem 1
Lt (25 st Ter gowme hunchion fin O Let G pe any path n D from ariy posnl At 3Ny poiey By
iy

Ly

iy = witf o+ gty + 2tk Oetey

Lryf i (-] ger

- g ol efl el
f;[F.rj.l'+Fl-__rJ?r-F.:rj1'_|- = -[-l{ﬂ_rd‘q-ﬁd?-b?zd:!]
ofafde Ady D2l
& J e dt aydt o2t
(=

= B} - IHA)

|.|"_’f
— gt = fJ«lt). yit), 21
[, =t yiu. 200

li=n

This shews that the vaiue of the integral 15 simply the difference uf the valugs ol fal the py
erdpointsof C and s, sheredore, independent of ne path C

2 Treconverse proal of thistheorem, ihal independence of path implies that F is gradient of some
function | is mare complicated and not given here.
The sbeove example 1 can, now be salved more gasily as

[ For = wa)-fia) = f(2.2.2)-10.0.00)

(2% + 22 + 22%) - (0% + P+ 208 =16
An easy way of sabang this probiem lollows from proof of theory 1, shown balow,
The last farmula in part (a) of the proof,

fleﬁJ;‘ +F.dy +F.d2) = B}~ i A [F = grad{]

s the analog of the usual formula 164 definite integrals in caloulus.

_F:'I;ﬂ:-:jdx = E{x:lr = G(b)-Gla) (G} = glx]]

3 Potential theory relates to cur preseant discussion, if we remember, that f i called a potenbal of
F = grad i, Thus the integral (1) is indapendant of path in D if and only i F & the gradien: ol 3

potential in 0.
Example: 2
independence of path. Determination of a potential
Evaluate the integral
| = jccax?ux +2yz2dy + yidz)
from A (0, 1, 2) to B: (1, - 1, 7) by showing that F has a polential and apphying ing integrd
formula
Solution:
If F has a potential f, we should have
!ll,.—-l:1I:'*1:llE'i f¥=F?=E'_|rE, f:-F!="_|'?
Wi show that we can satisty these conditions. By integration and differentiatian.
f=x*+ agly Z). =3 l.'-gy-ﬂ'yz, = g:'y"-z-bl'l-ll}

f=f‘iﬂf?.1] = I-E=g:_='|’lrﬂ.1.|-'|"I
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i Mow from Iirﬂtstﬂ'pwErranuwtha[_fzﬂ ¥, o g=yz+0= vz
f LY+hisy = h = 0, =4 h = constan! = 0 [say)
This gives fix. ¥, 2) = ¥ + y°z and the required integral | = fiB) - f(A)
| = f{1.-1,7-H0. 1.2 =(1+7-(0+2)=5

Thearem. 2 (Independence of path)

The intagral (1) is independant of path in a domain D if and only if its value around every closed path
in O | 2an0,

Proot: I we have independence of path, integration from A lo B along C, and along C; in Fig. 205
gives the same value. Now C, and C,, logather make up a closed curve C, and if we inlegraie from A
along C, 1o B as bafore, but then in the opposite sense along C,, back 10 A (so that this ntegral Is
multiplied by —1), the sum of the two integrals is zero, but this is the infegral around the closed curve C.

C,

c, "

Prool of Theater 2

Conversely, assume that the integral around any closed path C in D is zero. Given any poinis & and
Band any two curves C,and C, from A to B in D, we see that C, wilh ihe orientation reversed and c,
together form a closed path C. By assumption, the integral over C iz zerd, Hence the integrals over
, and C,. Both taken from A to B. must be equal. This proves the thearem.

Work. Conservative and Nonconservative (Dissipative) Physical Systems: Recal from the ast

section thal in mechanics, the Intagral IF[r}-dr represents the work done by a force F in the

displacement of a body along C. Then thanrem 2 states that work is independent of path if and only
if it is zero for displacement around any closed path. Furthermare, Theoram 1 tells us that this
happens If and only if F is the gradient of a potential. In this case. F and the vector field defined by
F are called conservative, because in this case machanical enargy is conseniad, that is, no work is
chone in the displacement from a point A and back to A, Sirnilarly for the displacement of an electrical
charge (an electron, for instance) in an electrostatic field,

Physically. the kinatic energy of a body can be interpreted as the ability of the body to do work by virtue
ol its mation, and if the body moves in a consarnvative ficld of force, after the complation of a round-trip
the body will return to its inttial position with Ihe same kinetic energy it had originally. For instance, the
gravitational force is conservative; if we throw a ball vartically up, it will (if we assume air resmstance o
be negligible) return to our hand with the same kinetks anergy it had when it left our hand.

Friction. air resiglance, and water rasistance always act against the direction of mation, l2nding to
diminist the tatal mechanical energy of a system {usually converting it info heat or mechanical
energy of the surrounding madium, or both), and if in the maotion of & body, “'lBI‘SE forces are 5o large
that they can no longer be neglacted, then the resultant F of the forces acting on the body is no
longer conservative, Quite generally, a physical system i called conservalive, if all the forces acting
in it are conservative; otherwise it is called nonconsenvative or dissipative.

Exactnass and Independence of Path: Theorem 1 relates path independence of the line integral
(1) to the gradient and theorem 2 to integration around closed curves. A third idea and theorem 3,

below) relate path independence o the exactness of the differential form
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4. F,dr + Fdy + F,0Z
under thie integral sign in (1) This farm (4) s called axact in a domam D in space i ;, 5 thy

differgniial :
of o o
e —Oi+—dy+—dz
ﬁ = rh ; af ? dz . .
of a difterantisble function [x, y, 2) everywhers in D that is. if we have

Fycx 4 F,dy + Fydz = di : : :
Comparing these two lormiias, we see that the form (4) is exact § and only if there is 8 differaeg,

lunction i(x, v, 2) in D such thal everywhare in D, _
R S |
5 F.. = E 5 = af, i 5= az_
I vectorial form hesa three equation (57) can be writlen

B, F = gradl _ _
Hence, by Theoram 1, the integral (1) is independent of path in D if and only if the diflereny,

form (4) hes continuous components F,, F,, F., and is exact in D o
This is practicalty important because there is a uselul exaciness critenion involving the mmnu

concepl. _
A domain D is called simply connected if every closed curve in U can be continuously shrung

any point in D without lsaving D,
For example, the interlor of a sphere or a cube, the interior of a sphere with finitely mary poings

removed, and the domain betwean two concaniric spheras are simply conneclad, while the
miteror of a torus (a8 doughnut) and the interior of a cube with ane space diagonal removed are ng)

simply connecied,
The criterion for path independence based on exactness is then as follows
Theorem. 3 (Criterion for exaciness and independence of path)
Let Fy. F; Fy in the fne integral,
f-F0)-dr = J(Fetx + Facty + Fydiz)
be continuous and have continuous first partial derivatives in & domain Din space. Then:
(@) Ifthis integral is independent of path in D—and thus the differential form under the inhEsgral
sign is exacl—then in D,

E. curlF = 0
in components therefore condition of exactness follows from curl F = 0. which gives,
]k
gsince curl F = = 'a— __EI'_
de By Az
Ik B F

ewlF = |[_3F3_,3F2J_
ax a2z
. K E_}_ oF; _ oF, ﬁ
g, === 1= _ﬁ
& &' & i -

(b) (&) hoideinDand D is simply connected, then the Integral is independent of path in D.

oF; aF oF, oF
_— =1 il L 0 [P
[E’lx a:]”[a:: ay

{8) Ifthe line integral is independent of path in D. then F = grad f by (2) and

curlF = cur (gradf)=p 5g
- _ = . that (8) holds.
{o) The praof of the Converse requires "Stokes's theorem” and is imitte-a. hera,
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Comment For a line intagral in the plang

JF-dr - [ (Fax+Fay)

curl F has just one comporent ang {6") reduces to the single relation 6",

2 B
B oy
ILLUSTRATIVE EXAMPLES

Exampla:

Ex..?cmesa &nd independence o path. Datermination of a potantial
Using (67}, show that the differential form under the integral sign of

t= [.|202%x+x%2 + zcosyzdy + (2¢°yz + ycos yz)z]

iz exact, so that we have indepandenca of path in any domain, and find the value of | from
A (0,0, 1) 10 B: (1, /4, 2).

Soluthon:
Exactness follows from (67), which gives

(Faly = 2x%z + cos yz - yz sinyz = (F,),
[Fﬁ}: = "“‘ﬁ"z - |:F3:I:|
(Fak, = 27=(F,),.
To find f, we integrate F, (which is “long,” so that we save work) and then differentiate to
compare with F, and F.,
{ F, = 2uyz?

Fo = (x®2° + zcos y2)

Fy = 2x%z + ycos yz)

[Fatty = [(x°2% + zcosyz) = 2%y +sinyz + gix,2)
f, = 2x2y+g =h=202%, g,=0 g@=h2)
i,=2¢%y+ycosyz+h =Fy,=2¢zy + yoos yz. h" =0

g0 that, taking h = 0, we have

fix, v, 2) = x*y2® + gin yz
From this and (3) we get, | = HB)- f{A)

— =
-— W W =

1
= {1, w4, 2)-10,0,1)=n+ EH'IEJ'I:—'D=:I'I:+1

The assumption in Theorem 3 thal D be simply connected is essential and cannot be omitted.

ILLUSTRATIVE EXAMPLES FROM GATE
@.180 The line integral ﬁ’.d'l’ of the vector V.(F) = 2xyz) + x°z] + x*yk from the origin to the point

PF(1,1,1)
{ﬂ} ig 1 (b} is zaro
() is -1 (d) cannctbe determined without specifying peth
[ME, GATE-2005, 2 marks]
Solution: (&)

f, = 2oz, i, = xfz, {, = xy
By integraning, we gel { = Potential function of § = xyz
2 line integral of the vector function from point A0, 0, 0) to the point B(1, 1, 1) s
= {B) ~f{A) = :.3":2}"3}1_1_1- - {:?!I'I}'DM:, m ] ==
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Q.181 Given a vector field F = yxd, - yz&, - x°a,, the line integral j'l3 di evaluated along & se
on the x-axis fromx =10 x=2I3

(a) -2.33 {b) 0
(e} 233 () 7 [EE. GATE-2013,
Solution: (5) Mary)

To find: jF-m along a segment on the x-axis from x = 1lox =2

& y =0 z=0 dy=0anddz=0
[P = [iyxs, -vah, ) (8,d By + )

[ yPxcix - yady - xidz

Pulting, y=0, z=0, dy=0 and dz=0

We get,

1]

[Fdi =0
0.182 Consider points P and Q in the x-y plang, with P = (1,0} and Q = {0.1). The line integry

O
2| (xcx + yey) along the semicircle with the line segment PQ as its diameter
P

(a) is -1
(o) 150
c) 151
(d] depends on the direction (clockwise or anfi-clockwise) of the semicircle
[EC, GATE-2008, 2 marks]

Solution: (b)
Taking f{x. y} = xy, we can show that, xdx + ydy, i5 exacl. 50, the value of the integral is
independent of path
= 2 (xax+y ox)
o, 1
< 1
= EL ¥ dx + 2}--;:1?
]
- [ G i ) B T
24
ox integral = HQ)~ HP) =[xyl ,, - (Y], g = 0~0 = 0
.183 The value of tha line integral
[(2sy’ds + 25" ydy + d2)
[ H
along a path joining the origin (0, 0, 0) and the paint (1, 1, 1) is
{a) O {b) 2
lc) 4 (d) &

[EE, 2016 : 1 Mark, SetZ]
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Solution: (b) B
J'ﬁ.a.r
G
where, F = .1FT+E:E}-'I+E
VxF = 3
(F isitrotational = £ is conservative)
F=% (% is scalar potational function)
§ = 2xy?
§, = 2%y
=1
e b= e 74 0
where, F is conservative
[F.dr i o
_ T2 N s
£ u:!.mﬂlIlib [x A El“‘“’ -

Q.184 Theline integral of the vector field F=5esis (352

+Ey‘.|_i + ¥t zk along a path from {0, O, O)io
:1,1.1}paran—.atgrizedby{:.ﬁ,:}is ;

[EE, 2016 : 2 Marks, Set-2]
Solution:

E= Exzl +(3 +2y)] + 22k
F.dr = fS.'cz dr +(3x% + 2y)dy + x*zdz
c

li
[ T—

=[ y=F z={t=0101
ok = ot

dy = 21dy, oz = o
. _[Jseimﬂaﬁ + 2020t + Pt = j{:{ﬁrhnﬁam

[s_r ]

5 11 53
WP T
g 4 3T AT !

2,14.21 Green'sTheoreminthePlane

Double integrals over a plane region may be ranstormed inta line integrals over tha boundary of the
region and conversely. This is of practical interest because it may heip to make the evaluation of an
integral easier. It also helps in the theory whenever one wants 1o switch from one kind of integral to
the ather. The transformation can ba dona by the following theoram.

Theorem. 1 (Green's Theorem in The Plana)

(Transformalion betwesn double integrals and line intagrals)

Let R be a closed bounded region (see Sec. 9.3) in the xy-plane whose boundary C consists of
finitely many smooth curves. Let F,(x, y) and F.(x, y) be functions that are continuous and have

aF; o _ ;
. partial derivatives E; and ﬁ everywhere in some domain containing R, Then.
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1 ”‘ _i_f_‘}ﬂdr = (Fx-+Fy)
A ax oy CorR spych that R s on fha left as wa Etd'.lﬂngem“

hera we integrate aiong the entire boundary

direction of integration (See Fig. Delow)
V4
Gy

P

C,is rraversed counterclockwiss, whily Ez

Region R whosa boundary is G consists of two parts:
is travarsed clockwise, so hat R is on left as we advance.

Comment. Formula (1) can be writlen in vectorial form
v [ fleuF)-fedy =g F - (F = [F,. F2l = Fyi + F)

3 _3h
=

This follows from the fact thal the third compenent of curl F is o

ILLUSTRATIVE EXAMPLES

Example:
Varification of Green's theoram in the plane.
Green's theorem in the plane will be guite important in our further work. Before proving it, latus

get used to it by verifying it for F, = v = 7y, F, = 2xy + 2x and C the circle x* + y2 = 1

Solution:
In (1) onthe left wa gat

23 3N - {2y~ Tidny =
L[J[ = af]dxdy [Jiey +2)- Gy -y Bijdmy
= Gn

(sinca the circular disk R has area x).

On tha right in (1) we represent C{oriented counterclockwise!) by
) = [cost, sint]

Then r{t} = [-sint, cos t].

On C we thus obtain

F, = sift-7sint,

F; = 2costsint+2cost.
Hence the integral in (1) on the right becomes

2x..
[ 4Ryt < | Usin® t=7sint)(- sint) + 2(costsint + costicostit

. - 0+7n404+2n=0n
This verifies Green's thearem in the plane,
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ILLUSTRATIVE EXAMPLES FROM GATE

.185 Value of the integral $(xydy - ylex), where, ¢ is the square cut from the first quadrant by the
c

lines x = 1 and y = 1 will be {Use Green's theorem 1o change the fine integral info dauble

integral)
(a) % b} 1
(c) % (d) -g [CE, GATE-2005, 2 marks]
Salution: (c)
Greens Theoram is
dy  db (. 1
odx + = e L e
poacevay = []| 5 enr] 4 W} i
Hara | = leydy - ydx) o
o {0.00
= $l-y"x + (xy)dy Bt
= W=y
. SR R
* T ay g
Substituting in Grean’s thearam, we get,
i 1 1 1
| = | [ly-t-2yjdedy = | [3ydxdy
yella=0 spmll =il
I , 1 :3
= | [3ey]q dy= IEFﬂT-E
y =0

avaluated over a sphare for the glven steady velocity

; surfaces in ral s to be tooE
Q.186 The following eg respect to a Cartesian coordinate system having i, |

vector field F = xi + yj + 2 gefined with
and k a3 unit base vaclors.
1
—(Fn)dA
J! 2 (Fa)
+ 7 = 1 and n is the outward unit narmal vecior 1o the sphara.

whera § is the sphere, x2 + ¥* .
The value of the surfaca integral is

o % b) &=
‘ { (d) dn
(c) st [ME, GATE-2013, 2 Marks]
Answer: (a)
AB7 The value of .
o I i{a:-a;m + {4y Bxy)cb]. (whete C s the boundary of the fegion boundary By x = 0
[

y=Oandx+ y=1118 [ME, GATE-2015 : 2 Marks, Set-3]
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Solution: (1.668)
[l3r-8)2)x + (4y-Bryloh, C is

boundary of region bounded by x =0, y= 1, and 24 y= 1.
Using Green's thearem

I= c,EPaHﬂdy} #sﬁ[%—%]w

Hexe, F:ﬂr—ﬂ}#
L= 4y - By

1= f[(~8y~(~16y))dsdy = [[10ydxcy

1 l=z 1
I= ”]jﬂ'.:l’J %E = EJd.'l'“—Ji'}E
K] Q o

1
f=m EI{T—:]?-EI'.': = 1 G666
a

4
Q.188 The value of the line mlagral §F- Fds , where Cis a circle of radius :r; unifs is
c

Here, Fix, ¥)= }rf + Exf and 7 is the UNIT tangent vector on the curve C al an arc length s
from a reference pointon the curve | and | & the basis vectors inthe x-y Cartesian reference.
In evaluating the line integral, the curve has to ba traversed in the countar-clockwise directon

[ME, 2018 : 2 Marks, Set-]

Solution:
[F-Tdr=[F.oF = [Fdx+Fydy

=JJ[%—%]HMF Fi=y Fpe=2x

- o4 M
= E{E o vy~ w ol
- ﬂdxdy
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Q.168 A scalar polential g hag thg following gradient

- Vo= yzi + :zf + r:.-'IE - Lonsider the integral
[c¥edr onthe curve r=xisyiszh T
¥i + 2k, The curve Cis parameserzed as tollows -
i=j

Y=l and1 gig3
z=2"
The value of the integral is

[ME, 2016 : 2 Marks, Set-2)
Solution:

jvﬁ-df = j{'_ﬁrzl_"+ rzﬁ--;yi}x
c i ]

= j}-‘!:f1+:zd}f+:}fﬂ'z = jdfr}-‘ﬂ = (zyd)
[
Giventhatlx =t y= 2, z= 32 E

= -3y = 3¢
=qF-1)=3-3
=729-3=T728
2.14.22 Triple Integrals : Divergence Theorem of Gauss

In this saction we first discuss riple integrals. Then we oblain the first "big” integral thearam, which

transforms surface integrals into tripke integrals. Itis called Gause's divergence theoram because
itinvoivas the divergence of a vector funclicn

a
1

The triple integral is a generalization of the double integral. For defining 1his integral we consider a
function f{x, y, ) defined ina bounded closed region T in space. We subdivide this three-dimensional

region T by planes parallel to the three coordinate planes. Then those boses of subdvision (rectangular
paralielopiped) that lie entirely inside T are numbered 1 to n. In each such box we choose an arbitrary
paint, Say, (x,. ¥,. Z,) in box k, and form the sum

J, = Erm.n.mﬂw
where OV, is the valume of box k. This we do for larger and larger positve integers n arbitrarily but so
that the maximum length of all the edges of those n boxes approaches zero as n approaches infinity.
This gives a sequence of real numbers Jn.ky, ... We assume that f(x, y, 2) is continuousin a domain
containing T and T is bounded by finitely many smooth surfaces (see Sec. 9.5). Then it can be shown
(Sea Ref [5] in Appendix 1) that the sequence converges to a limit that is independent of the choice

of subdivisions and corresponding points (x,. ¥,. &,). This limit is called the triple integral of f{x, v, 2)
over the region T and is denoted by

jﬂf{x,y, zidxdydz or [[[fix,y,z)dV
q

Triple integrals can be evaluated by three successive integrations. This is similar to the evaluation of
doubla integrals by two successive integrations

m—w’ M I v e
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2.14.22.1 Divergence Theoram of Gauss _
Triple integrate can be transiarmed into surface integrals over the boundary surface of g ragy,

space and conversely, This is of practical interest because One of the two I-'er'.-ds of intexgral 5 ey,
simpier than he other. It alsa helps in estabishing fundamental equations in fluid flow. heat cang, ¢
elc.. as we shall see. The transformation is done by the divergence theoram, which invalyes lhe
divergence of a vector lunction F = [F,, Fy Fgl = Fii+ Fl+ F K,

1 divF = J';F';+% +% rE'EG.ELH]]

Theoram. 1 {Divergence Theorem of Gauss)

Transformation batwesn valume integrals and surface integrals . .

Lel T be a closed" ! bounded region in space whose boundary 15 a placawise Smaoth ori
surface 5. Let Fix, y. Z) be a vector function that is conlinuous and has continuous first pary

darivatives in some domain containing T. Then.
2, jj divFdV = _[js:-nnm
T -4

where n is the outer unit normal vector of S (pointing to the outside of 5, as in Fig. 231),
Formula (2) in Components. using (1) and n = [cos a, cos B, cos y], we can wrile (2)

2 ]ﬂ(%"’%*%}m dydz = ];:l-tF;cnsu+F=cusﬂ-+Fz_nnsT}:l.ﬁ.

since, HF ndA = H{Fﬂrdz + Fodzdx + Fydxdy)
4 ]
equation £ may alsa be written as,

3. j!_[ % + % + %]dx dydz = jsjtF. dy dz +F.dz dx + Fydxdy)

ILLUSTRATIVE EXAMPLES
Exampha:
Evaluation of a surface integral by the divergence thearem

Belfore we prove the divergence theorem., let us show a typical application. By transfarmingto
a tripla intagral, avaluate

| - H{xady dz + x%y dz dx + x*z dx dy).
5

where 3 is the closed surface consisting of the cylinder 32 + y2 = a? (0 < z < b) and the circulsr
disks z=0and z=b [x? + y¥ € a?),

Solution;
In{3) we now have

F1 - -Kaer=H:2!p"F =Kzz

.
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Hence, divF = 3xf + x% + x2 = 50¢

; (o] enofdinates
introducing polar coardinatesr, 8 defined by x = 1cos 8, y =180 @ (thus, cylindrica

¢ @, 2), we have dx dy dz = r dr dé dz, and we obtain

| = [[]5xidx dydz
T

= ELI:djffur?cnsz ardrde dz
5b [ j‘;“ﬁ' cos® 8 dr de

4
- w2 bt
E:TL cost B da >

14.22.2 Stokes’s Theorem _ e

: Having seen the greal usafulness of Giauss's theorem, we now furm 10 thalsa:r:und bn?j c‘[l'léﬂfﬂ .

ihis chapter, Stokes's thearem, which transforms ling integrals inlo surface iINtegr als and conversely
Hance this theorem generalizes Green's thecram, Il involves thie curf,

i | K
T S L
4 curlF = ~Bil
Fp 2 R
n
- G
f@c
M
Sipke's heomm

Theorem. 2 (Stokes’ Theorem) .
[ als
ation between surface integrals and lina miegr _ |
Iﬁm piecewise smaoth griented surface in space and et the boundary of S be a piecewisa

ermooth simple closed curve C. Lel F{x. y, Z} be & Confinuous vacion tunction that has continuous
first partial derivatives in a domain in space containing 5. Then

2 [[teuriF)-ndA = §,F rie)ds
£

ot § and, depending on n, the intagration around C is taken in fre
Furthermore, 1 = drfds is the unit tangent vector and & the arc
n in terms of components:

where n is a unit normal vector
sense shown in Figure above. .
lzngth of C. Formula 2 can be writie

iF; 3F1-3_FE. [E—FE—E—!:J-F]dudU
o G220

- @G{Fmﬁgnwﬁdz}

I where Ris the region with boundary curve & in the uv-plane comresponding 10 5 reprasentad oy

r{u, v), and N = [N,, M. M, =1, %l
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Example: 1
verification of Stokes's thaoram S
Rafora proving Stokes's thecrem. 11 U3 get used to It by verifyng i for F = [y 2, %] i 4 2.4
and S the paraboloid,
° z.:r{;-:,y]-htxh;r?].zaﬂ
Solution: _ -
The curve C is the circle rig) = [cos s, SN S, D) =cossi+ NS It has thie unit angent veg,

ris) = [-sin s, cos g, 0] = —8in el + cos | C.ﬂﬁs.equﬂrlﬂ'y', the line integral in [2) on the Fight

is simply
§.F-or = [?*lsine)-sins) +0+0Hds =1

On the other hand, in (2) on the laft we nead (verity this)
curl F = [<1,-1, -1]
N = grad (z -1 ¥} = [2x, 2y, 1]

and

so that [curl FLMN = —2X - 2y - 1. From {3) in pravious -

gachon ¥
we get S —

{[tcurFy-ndA = th-?:-:— oy —)dx dy

5
T Hq—zmnsa;z sing — 1) rdr dé

— r dr d@. Now the projection A of S in the xy-plane s

where x = r cose, y =rsin and dx dy
o, The integration of the cosine and sing tarms

given in polar coordinates by f:rs1,0s4@
aver @ from O to 2r gives Zer. Tha remaining term —1. r has integral (- 1/2) 2n =-m.in
agreament with the previous resull. Notle well that N is an upper normal vecior af S, and r(z)
grients C counterclockwise, ag required in Stokes's theorem.

Example: 2
Green's theorem In the plane as a special case of Stokes's theoram
Lat F = [F,, F,] =F,i + F5j be a veciar function that is continuously differentiablein a damainin

tha xy-plane containing a simply connected bounded closed ragion 5 whosa boundary Cisa
piecewise smooth simple closad curve. Then, according o (1),

¥, &

[cudFya = (curl Flk= 7, Y

Solution:
Hance the formula in stoka's theorem now takes the form

oF;  df ~
.LI[ e “5}3-"‘ = §.(Fdx +Fydy)

This shows that Green's theorem in the plane is a special case of Stokes’s thaoram.
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ILLUSTRATIVE EXAMPLES FROM GATE
0191 Slokes heorem connacts
{a) alineimegral and a surface integral
(b} asurface integral and a volume iregral
{c) &hre integral and a volume ntegral
id} gradientof a function and its surface Integral

Solution: (a) [ME, GATE-2005, 1 mark]

A line integral and a surlace integral is ralaled by siroke's theorem.
Q182 Which one of the following descrites the relationship amang the three vectors, 7+ ] + K,
2i+3]+k and 5 + 8+ 4k 7

(@) Thevectors are mutually perpendicular (b) The vectors are linearly dependent
(¢} The vectors are linearly independant (d} The vectars are unit vectors
[ME, 2014 : 1 Mark, Set-1]

Solution : {B)
1.:9 7]
For linear dependency. det |2 3 1| must be zero.
58 4

.t A= HI2-B)-1B-5)+1{12-15)=6-3-3=0
. Thare three vectors are linearly dependant,

0.183 Curl of vector E = 22% —Eﬁr?z? + Er‘zaﬁ i
(@) (4yZ® +2xy2N + 2¢%2] - 2y%2k (b) (4yz® + 20y )i — 2¢%2] - 2y72K

(c) 2x2%f —4dxyzj +6y° 2k (d) 2x2%] + duyz) + By° Tk
[ME, 2014 : 1 Mark, Set-2]

Solution : (a)

F = £227 -2xy%z] +2v°2%

i 1 k

LR T )
UxF = ar oy dz

22 _owir P

af d d a3
r‘[%{zr‘*‘z-“f: + %{Exy*ﬂ] -] [a—y {Eﬁ"h—ﬁ{r’z*}] + E[Etvaﬁ-*ﬂ - Et:’:ﬂ]

xE = Jlayz® +2xy®]- T[22t + k[-2y"z-0]
(4y2® + 2xy?)i -(272)] —(2y" 2}k

i

0.194 Divergence of the vacior figld x2zi +xy] -yztk at{1.-1, 1)is

(o) 3
(a) O .
fc} & d) & [ME, 2014 : 1 Mark, Set-3]
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e o “ﬂ!}! H.I.l.—
Solutlon : (c)

F l-:l.ﬁ; i |.'||I'.| ',".-"':'F'
i, o vl il ;
(24 - ¢
v ih Ll iy gL er-,-,.- 'I
Vo R L

vFquu 2E1lel+l -2 11 - BN (TR

Q.195 The surlace intagral ”:{Hu pfindS over the sphere gieen by o 4 @ 4 2 y
n b

[ME, 2015 - ]
| 2 arky, 3.1.3]
Solution: (218)

Accodning o gaurge dvergance thearsm
i
”;{Ellrf—Ey,l}-ndS = njdlunruﬂﬁsilﬁri- Ay, elv
5

- ;Eﬁ--.‘]ix;-t[rtl

' Fwd vy
_ E‘:-:E:-c;—nr?? - 216

Q.196 Let V. (1v)=x"y +y'z+ 2%, where [ and v are scalar and vector fiedds respocivel |

V=yi+zj+ 2k, then v-Vi is

(a) »?y « v’z + 2% ) 2xy + 2yz + 224
(C) x+y+2 id) O
(EE. 2014 : 1 Mark, Sai-
Solution : (a) ;

§o= yi+zi+ K

5z = XY+ ¥z e

y%u%u% = ¥y + ¥z + 2% A
& . . [~ - ’H-E
v Al = k| —+—+ —
tywzun}[a - .-J'z]
. at I-FH xF.H [
o kg B
v A ﬂ:t a? 27
From equations (i) and (i)

V9 = %% + 27 4 7%

rr..
%:u Ineu vy cdlnocdailiiel
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o197 _Ul'-." «Plds . where P is a vector, is equal 1o

@) Pl
wi ) fvxwxPedy
o) ;
(e} $vxPedi i
Solution: (a) [EC, GATE-2006, 1 mark]

J‘Jli'hp"ljﬁ = .rf'PI:” lg.gh&s FHEU"E'TI"II'

Q.188 Consider a vector field A (7). The closed loop line integral Eﬁﬁ.- dl can be expressed as

(@ §PIVxA)-85 over the closed surface bounded by the loop

(b} gf‘lv Aldv over the closed volume bounded by the top
{c) ”II,T Aidv over the open volume bounded by the loop

\d) j_[t‘i" x A)-ds over the open surlace bounded by the loop

[EC, GATE-2013, 1 Mark]
Solution: (d)
According 1o Stoke’s theorem
A-Gi = [[(VxA) T

i

QOO0




— CHAPTER —

Differential Equations

3.1 INTRODUCTION

Differeniial equations are fundamental in engineening mathematics since many of the physicy
laws and relationships between physical quantities appear mathamatically in the form of sueh
equations

Ihe transition from a given physical problem toits mathematical represantation is called modsaling,
This is of greal practical interes! to engineer. physicisl or computar sciantist. Very often,
mathemalical models consist of a differential equations or system of smullanecus differenigl
aquations. which needs 1o be soived. In this chapier we shall look at classifying difersngal

equations and solving them by various standard methads.
3.2 DIFFERENTIAL EQUATIONS OF FIRST ORDER

3.2.1 Definitions
A differential equaticn is an equation which involves derivatives or differential coefficients or
differentials. Thus the foliowing are all examples of differantial equations.

. 'ljz}l: ]
(@) xidx +y¥dy=0 () e ek =
6 v x4 x (d) 1+{ﬂ _m= i
dx dyjdx dx e’
dx dy . sdZ oz
R Wy =8 [, =%+ wx = a &in pl  —ay—=32
(&) = Wy cog p I:I‘l' inp {f p Yal'ﬁ.'
a .
|;.:| H_lﬁr = EEEI
o’ e

Anordinary differential equations is that in which all the differential coefficients all with respect
1o @ single indepandent variable. Thus the enuations (&) to (d) are all ordinary differential equalions
{e)is a system of ordinary differential equations.

A partial differential equetions s that in which there ars two or mare independert var
nartial differential coefficients with respect to any of them, The equations (f) and (g} ar®
difierential eguations.

ahlesand
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canne

The order ol a differantial aquation is the order of
degree of a differential equalion is fhe degrea aof |

equation has been expressed in a fom free om
ara concamed.

Thus from the examples abave,
(a) is of the first order and first degree,

(D) Is of the second order and firgt degres;
dy

; gy _ _[dy 2.
{c] writlen as ydn = :{[&ir + 7 15 of the first order but of second degree:;

thie highast darvative appearing in it. The
he highest derivative ocourring in its, after the
radicals and fractions as far as the darivalives

- . -5 4
(dh After removing radicals is writlen as 14+{ B = 3’ 2y
. dx d®
and is of the second arder and thirg degres.

ILLUSTRATIVE EXAMPLES FROM GATE

.1 The degree of the differential equation i: + 207 =0is
dt

(a) 0 o) 1
(c) 2 (d) 3
CE, GATE-2007,
Selution: (b) [ o

Degrea ﬁf a difterantial equation is the power of 1s highest order derivative after the differential
2quation 15 made free of radicals and fractions if any, in derivative POWEr.

x

Hence, here the degree is 1, which is power of e

3
Q.2 The order and degree of the differential equation ga;; +4 E"r] +¥ =Qare respectively

i
(a) 3and?2 (b} 2and 3
(c) 3and3 {d) Jand 1
[CE, GATE-2010, 1 mark]
Solution: (a)

i
=

o dy ¥
m—z**diu—:] ty

Harmoving radicals we get

&Y dy Y
2 - ‘ﬁl[a;] ‘*’}
=, The order is 3 sinca highest differential is :%

The degree is 2 since power of highest ditferential is 2,

y CamScanner
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fian o't +_Id—?|1.:13l. Is &
0.3 The Blasius equalion, o T 2an |
{a) sacand order nonlnear ordinary differential equation
(b) third order nonlinear ordmary diffarantial ec!uatu:nn
{c] third order lingar ordinary differential equatian
i i rdinary differantial equaton
(d) mixed order nonlirgar o ry i A -

Solution: (b)

d  2drf

aliowed in dnear diferential equation

E‘ﬂ &7 ois third arder [:_j-n_:'] and il is non lingar, since the product f x arz 1Sl

Q.4 The partial diferantial aguation

M oax axd
(&) linear equation of order 2 b} non-lingar aquatrun ol arder 1
ic) Hnear equation of order 1 {d) non-linear equatkan of order 2
[ME, GATE-2013, 1 Mark]
Solution: (d)

In the equation, dependanl variable mullipiad with derivative, soit 15 nod a linear equation
.. given difierantial @quation is non-linear equation of order 2,

0.5 Conzider the lollowing differantial equation:

%= -8y, initial condition: y =2 at t=0

The value of yal =3 is

(a) - 50 (b) 21
(c) 2a's () —15e2
[ME, GATE-2015 : 2 Marks, Sat-2]
Solution: ()
dy
ar =5
ay
‘I'? = —IED'E
Iny=-5+C
at F=0
y=2
n2=_
S0, INny=-5t+In2
In-J'l s

w—__. —_ |
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..--"""'r._._-_-_
O - 5
:I""' EE-EI
al te= 3
¥=2g"

; , 4 3
a6 Theioliowing differential equation has 3[‘;_13'] + d[ﬂ] FRT SI J

at
(a) degree =2, order=1 (b) degree =1, ordar= 2
() degres =4, order=3 (d) degree = 2, order = 3
[EC, GATE-20085, 1 mark]
Solution: {b)
Order is highest derivalive term, so order = 2. Degrea is power of highest derivative tarm,
So, degree = 1
I : '52'!' dy i fl =
07 Theorder of the differential equation F + [—-d-l-] sy'ma s
(&) 1 (o) 2
fc) 3 (d) 4
[EC. GATE-2008, 1 mark]
Solution: (b)

Highest derivative of differential equation is 2.

3.2.2 Solution of a Differential Equation

A solution (o integral) of a differential equation is a relation betwean tha variable which satiafins the
given diffarential equation.

o
For exampile, y = gegd ()]
i - LS. i)
is a solution of o wE

The general (or complete) solution of a differantial eguation is that in which the number of arbitrary
constants is equal to the order of the differential equation. Thus (i) is a genaral solutkon url{li} as tha
nurmiber of arbifrary constants (one constant ¢} is the same &5 Ihe orger of the equations (7) (lirst order),
Simiarly, in the genaral solution of a second order differential equation, there will be two aroitrary
constants. : o .

A particular solution is that which can be obtained from the general solution by gring partcular

values to the arbilrary constants,

3

A

Far example y = 48
is a particular solution of the equation (i), as it can be derived from the genéral solution (i) by putting

| c=4, | _

5 A differential equation may somelimas have an additicnal solution which cannot ba oblained from the
| genaral eniution by assigning a particular value 10 the arbitrary constant. Such a solution is called a
| singular solution and usually ie nod of much praciical irarest in engINearing.

|
|
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3.23 Equations of the First Order and First Degree _-\-—_\\

It i not possible 1o analytically solve such equations In general. We sh
special methods of solution which are applied to the fallowing types of
1. Equations where variables are separable.,

2. Homogenous equations,

3, Linear squations,

4. Exacteguations.

In other cases, the particular solution may be dalermined rumerically

all, hl.'}"u'-'H'.'Erl thisgy
enuaiions: =

Somy

3.2.3.1 Variables Separable

IFin an equation it is possible to collect all functions of x and dx on ou
¥ and dy on tha aher side, then the variables arg said Iz be saparahle
an aquation is f{y) dy = &(x)dx.

18 side and all g fluncs)

10
.Thus he Ozneral r{FFI'ICd ‘S::I-:

Integrating both sidas, we get Iff?]dy = _[ §(x)dx + c as its solution

ILLUSTRATIVE EXAMPLES
Example: 1
S0ive Ex—y = gy 4 x2 gy
Solution:
Given equation Is % = effe* + x9)
o ¥ ay = (" + x¥dx

1]

integrating both sides, J‘e"’dr _[n:a“ + %% + o

-@% = B+ —4¢

387 = 38 -+ [&" = -
Note 1: In the above line, we have introduced a new arbitrary constant ¢’ instead of ¢, in ordee
o putthe result in a better form, Such changes are allowed and aften mada.
Note 2: Intfal value problem: A differantisl equation together with an inilkal condition is caled
an initial velue problem. Itis of the form given in the next exampile. The condition y(0) = 2in
the example below is called an initial condition. It is used to determing the valus of the arbiray
constantin the general solution. In a second ceder differential equation, two such condiions wi
be required, since there will be two arbitrary constants which will need to be determined.

Example: 2
Salva dyfdx = (x+y+ 12 ify (0) =0,
Solution:

F’u1tingx+p+1=t,wgetﬂ=m_1.
dx dx

-~ The given equation becomas ﬁ';t -T=1or % =1+

ﬁﬂ
1nmeau Uy cdalroscdrliner
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integrating both sides, we gat f% - jd; e

o tan't = x+ ¢
or |EH‘1H+}-+‘|:|-=1*C
o A+¥+1 = tan(x + ¢)
mﬂ‘n !':I]lr:‘]
- 1 = tan(c)
= G- E

4

Hence the solution 18 x + y + 1 = tan (x + wfd},
MNota: Equations of the farm oy

o ax + by + c) can be reduced to tha ‘variabia separable’
form by putting ax + by + c = 1.

ILLUSTRATIVE EXAMPLES FROM GATE

Q.8 Bictransformation ol an arganic compound having concentration (x} can be modeled using an
) d
ordinary diflerential egquation -&tl' + kx?* = 0, where k s the reaction rate constant. fx = &
att = 0, the solution of the aquation is
1 1
(@) x = ap™ (o) ;;;.pht
¢} x=al1-e™ (d) x=a+k [CE, GATE-2004, 2 marks]
Solution: (b)
';_1—: P (Mote: This is in variable separable form)
il
i
= F = — hiﬂ

Integrating both sides, ]E} = [ kel

—'lw—h1:+|:-
x
1 ;
al t=0,x=a
= g :hh[ﬂ'#":-"
" 1
= C = &
1
; :II'“+E

pherical naphthalena ball exposed to the atmosphers losas volume at a rate proportional 1o
e J';:ir:atantaLaws surface area due o evaporation. If the initial diameter of the l_:rall ke 2 crnand
the diameter reduces to 1 cm after 4 months. the ball compiletaly evaporates in
e = TIE]:: ignfiniln time
B [CE, GATE-2006, 2 marks)
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"0 gagy
Solution: (a) _-_‘_-_-_\-\_\‘
v
EI"' = —kA
4 5 [I-]
whare V= = ard
A = 4mt
s i 4 dr lr
=5 e T e A _—
ar = gAY g e
Substituting these in (i) we get,
dr
4IEE = —k(4mrt)
dr
" atat
=5 dr = =kt
Integrating we get
r=-kt+0_C
al t =0 r=1
= 1= kx04+0C
= c=1
r s re _tl + 1 &
. Mow at | = 3 months r = 05cm R
0o = <kKx3+1
0.5
= k = T
Mow substituting this value of R in equation (i) we get,
F= —ﬂ—:ftﬂ
putting r=0 (ball completely evaporaies)

in above and solving for t gives 0 = —%§t+1

== t = Bmanths

Q.10 The solution for the differential equation % = %y with the condition thaty = 1 atx = 0is

i

1
(8) y=e® (b) Infy) = 5 +4
2 .3
(©) Inty) = - (d) y=e®  [CE. GATE-2007, 1 mark
Solution: (d)

-

This is variable separabia form
dy
y = dx

N
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Hﬁpﬁﬂlﬂ
.--"""_'_-_-_
‘F% = jﬂzﬂ:
¥
= g,y = Tﬂ'_+c1
_l_"l .'I
=5 y = G-ﬁ_‘cln EE'HHH
o
¥y = Cxa?
NMowalx=0 y=1
1= ::::-ualg
= C=1
x?

y = &7 isthe solution

Q.11 Solution of 5% = X atx=1andy= 3 s

6] X~ 2 () x+ i 44
F _ e (d) x°+y* =
(c) »*-yi=-2 [CE, GATE-2008, 2 marks]
Solution: (d)
By _ X
de - Y
o ydy = -xdx
- Jydy = Joxdx
g e
R
at x = 1y=3
B _ =F .¢
2 2
- C=2
%
Solution is % = T+E
i x oyt o= 4

: ; dy . e of
Q.12 Soiution of the differantial equation 3y a—+2x = (I reprasents a family

i oo
(c) parabolas [CE, GATE-2000, 2 marks]
Solution: (&)
oy - D
3""r:c:lzat +X
dy _ ==X
= dx 3y

Scanned by CamScanner
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=5 Efd’l = Exd:
- [avdy = [~2xdx
g'ﬁ"? - —2!%2'""':
=
= y? + 2x° = C
S SR
» aua
2] [3
X B
- L, ‘Mg
2 ] 3

which is the aguation of a famify ol allipses.

(.13 The solution of the ordinary differential eguation % +2y =0 Jor the boundary condifion, y =5

atx =13
::EE"'E“
(@ y=8* b) ¥ W
¢ y=1095e% d) y=3695¢e
ST [CE, GATE-2012, 2 merk]

Solution: (d)
G.iuan,d.i+2y =0andy{1)=5
ax
dy
d =
f%‘-‘i = [-20x
= ny = =2+¢C
= r = E‘h.EE={:t'B'.EI
x 5
W1} = c& =h = DL:F
5 o _po2 -ox
So, ¥ = =i = ba"m
E]
= 3605 o

Q.14 Consider the following ditference equation

xf yolx + :dy}c!m-‘:n = y(xdy - jm';.;jgin{
Which of the following is the solution of the above equation (c is an arbirary constant)?

L I

W e, (b} ySnZ=¢

() ‘-"":”‘E%‘E () xysinL=c
X

[CE, GATE-2015 : 2 Marks. Set-l

IR o
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Solution: (c)

%

- X+ xd At

viydx +.xdy)cos o = Yixdy - yegin ¥
X

xdy - = ~lan=
Lik ¥=wdx ~ T
¥=1wry

dy = vdx + xgv
'.l"-rﬂ.1'+'|-'_'“]'_|'+ -'F'E-ﬂ'ﬂ'
k’IﬁI+xEdl.f_.|,.._‘d_t = vianwv

Tav + 2vdlx
“_‘_-_|

xtv = viany
2v dx
1+-:_Ev_ = yiany
2v o
TEI? = ¥ianv -1
o
- [tmu-l}w
X W

Integrating both sides.
Ell:hg.r=+[:5||a&-|:v|--lugv+lﬂ1;t1::

ok 2 . Csecy
¥
= PLE—
x x
=h :ymsi =g
I
(.15 Consider the following second order lingar differantial equation
a’y 2
E;i——12: + 245 — 20

The boundary conditions are: at x = 0, y =5 and x = 2 y =21
The value of yat x = 1is .

= Differential Equations | 2as

[CE, GATE-2015 : 2 Marks, Set-11]

Solution:
d’y
ax?
Integrating both sides w.rt. x

Y _ 4841282 20x 4 g,
dx

Integrating both sides w.rt x
y=-+d- 10+ o+,

= —12x% + 24z - 20

Alx=0 =5

= 5=5

Atr=2 y=21

. 2N =-16+32-40+2c, + ¢,

szanned by CamScanner
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26,=214+16-2+40-5
2. = &)
li:.l = )
=7 yo= =1+ 4’ - 100 20 + 5§
Pulxm 1
= y=-1+4=-10+204+5=18
Q.16 The solution of the differantial equation 3—1": +y° =018
4
i .
{a) SNt (k) !r’=T+'=
(e) cet (d) unsolrable as equation I8 NOn-lingpe
[hEl mﬁ"m,ﬂm
Solution: (&) !
Given diffenential equation
2.
dy
=) e
¥ HIIE
‘ . v
O integrating. we gat _il' ¥ = jdi
1
— = K-+
¥
I
LI

Q.17 The solution of dyfdx = y® with initial vaiue y (0) = 1 bounded in tha interval

(8) ~=SXS== {b) —=sxsg1
o) k<1, x>1 (d) -22x<2 [ME, GATE-2007, 2 marks]
Solution: (c)
- dy
Given ™ ¥
dy
= j’,’,e = Idﬁ
1
= ‘; = X+ G
l-,l - _L
i+C
When X =0
y =1
Cc=-1
¥ = =5
y is bounded whan X-1#0
i.e. x o2
i, ¥ < loarxs1

b B
canned by CamsScanner
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—

2

(a) !r=tﬂn5?—+lanc o) y-iang[%m]
(c) r=lan2[.;.]+c - r=tan[-’5;-+c]
Solution: (d) IME, GATE-2011, 2 mark]
Y (1
j% = [xelx

tan-! K
y= Tl

z
1an[52—+ l:]

Q.19 The solution of the first order differential squation ¥{1) = =3x(t}, %0} = x, is

g
(]

(a) x (t) = x & (b) x{t) = x, 02
B g 8 (d) * (1) = %y &
[EE, GATE-2005, 1 mark]
Solution: (a)
Given, i) = -3 x(t)
| dx
.8. E E —3::
Ij_l{ = =3 dt
L4
dx
— J'-acat
= hx =-3t+0C
= X = E-m;ﬂzacxaﬁl
puiting & = G

X = Cxe™
Now putting initial condition x(0) = x,

X = G = Cy
{:"1 = Xy
~ Solution is X = % oS
i.e. xt) = x, ™

“Scarllicu vy valliouvalicl
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Q.20 With K as a consiant the pessible for the first order differential equation 3
e

;‘H-ar-m
—a ¥ b) - e
(a) e +K (b) 35 +K
(o) 3™+ K (d) -3e* + K
[EE, GATE-2q
Solution: (a) 11 mary
& _ s
dx 2
jdjl' -— jE’B‘ﬁ!{
-3%
& 1 3
=  — = = H‘
¥ 3 +K L B

Q.21 A differential equation %-G-Ef = 0 is applicable over -10 < 1< 10. If i{4) = 10, then f1-5)

[EE. GATE-2015 : 2 Marks, Set.2
Solution: (1.652)

— = 2

— =02
2 - Jozd
¥
logi = 0.21 + logl

1o
Caﬂ

e Ca Al
il4)=10ie i=10whent=4
10 = Ca®¥
10 = (02.225)
C-'= 4,483 :ﬂ
i = (4,493) 0%
wihen, tm -5

i = (4.403) g921-81 = 1 G52
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which of the following is a solyi _
o ) wt) = 3e on o the ditierenial equation dilj + 3nit) = 07
o 3. (b) x(t) = 2a-»
(e} A==zt (d} xit) = a2
soution: (b) [EC, GATE-2008, 1 mark]
ox
dar ~3u
dx
- ™ 3t
dx
< = |-t
in ¥ = =3l+e
= ¥ = giee
= = £ -3 =
- e DO (e, = o9

Q.23 Match List-1 with List-1l and select the correct answer using
List-l

List-Il
PU - A
it 1. Circles
g M__¥ .
* X 2. Slraight lines
dy X
c. dx v 3. Hyperbolas
ﬂ__ K
D. dx
Codes:
A B c D
@ 2 3 3 1
) 1 3 i 1
&y 2 1 3 3
o 3 2 1 2
Solution: (a)
oy ¥
A, e
B GRS
y X ¥ X
logy = logx +logc=logecx
¥ = CX
dy _ =¥
B. e K
ay —dix dx
Pl e s

i

Jcannea By CamScanner

the codes given below the lists:

[EC, GATE-2008, 2 marks]

... Equation of straight lina.
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’Umiﬂﬂ

og v
log y + g ¥
log yx

WE

w]
S 212 %

I
!'H.I

+

Pl
a
o+
‘iml

n

-logx +logc
log ¢
logc

E_ﬁ

X

e

— const

LTETR

i

~X

e = —| X ax
: [yay

X Lk
2 "2

‘Lm|ﬁu

Q.24 The solution of the diferential equation g‘*’ =ky, yl0)=c is

(8) X =ca™
(c) y=ce™
Solution: (c)
dy
dx
" dy
¥
Integrating both sides
In ¥
Pui, X
In wiC)
A
Henca,
In ¥
= Iny-Ing
= h[i
c
= ¥
r:
s y

!canned by CamScanner

dx
(b) x = ke
(d) y = ce*

Ky

kdx

kx o+ A

= Inc

kx + Inc
kx

Jydy = xdt = IYEFF =

.. Equation o h'.l'll'ﬂrl;n.ma
_Im: dx

.. Equation of hyperbayg

.. EQuation of a ciecie

[EC, GATE-2011, 1 marks]

[+ y(0) =]
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Q.25 The general solution of the differential equation dy _ 1+cos2y is

: dr 1-cos2x
(a) tan y=cotx = ¢ (cis a constant) (b} tanx—cot y = c(eis a constant)
(c) tan y+ cotx = c(cis a constant) {d) tanx + cot y = ¢ (cis a constant)
[EC, GATE-2016 : 1 Mark, Set-2]
Solution: (c)
gy _  ds
1+c082y  1-cos2r
dly _ dx
2c08°y  Dsinfx

sec?y dy = cosec?xdr
Integrating both sides, wa get
any = -cotx + ¢
lany + ¢cols = ¢

Q.26 The type of the partial differantial equation %- :%1 i8

{a) Parabobic ®  Eilotic
(c) Hyperbolic {d) Noninear
[IN, GATE-2013 : 1 mark]
Answer: (a)
3.2.3.2 Homogeneous Equations
Homogeneous equations are of the fom % = ._L{[:!';}}

; : a5
where fix, y) and & (x) ¢(x, y¥) homogeneous functions af the samea degrae in x an .

Homogeneous Function: An expression of the form agx" +ax™y 4+ a.Ex"'*%F+-l- a y" in which
avery term is of the nth degree, is called a homogeneous function of degree n. This can be rewritten

¥ a,(y/x) + adyip +....+a,(y)"].
?‘Ia-w Erfﬁun:ﬁms f{:.{r] which can be expressad in the form ¥"i(y/x), s calied a homogeneous

funciion of degree nin x and y. For instance »¥ cos (yix) is 8 homogenaous function of degree 3 in

x and y. .
To solve & homogenaous equation

1. Puty = ﬂ.m% = '|'+E%.

2. Separate the variables v and x, and integrate.

ILLUSTRATIVE EXAMPLES
Sohve  (y2- ) dx—2xydy = 0.
Solution:
Giuanmﬁmm.d_"rz "'Z._“-:imlchiahmmgmsinxmdy. i)

de  2xy

Scanned by CamScanner
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d
Put y=m1han%_v+:3{
i T V o+ EE = —i v--l
s Eq. (iybecomeas = 5 1.r
2
ST i) I Lid)
y e 2l v 2v
Separating tha variables,
2v - _ox
G S —
14w X
Integrating both sides.
J‘E‘Hd'-' = _Jﬂ_i':+:
147 X
or Inf1+v) = -Inx+c= In;:|-+ln:1
or In {1+ %) = m[i]
S
€y
1+ = =
replacing v by £ we get
X
1+ r 4
X x
o 4y = CX
C o i
. [K_E]’ el

This general solution represents a family of circles with centres on the x-axis at [gu} and

radius = % thus passing through arigin as shown balow,
¥

Fig. Ganaral Solution [Family of circlas)

3.2.3.3 Linear Equations of First Order
A differential equation is said be iinear if the dependent variable and its differantial coefficients otcUl
anly In the first degree and not multiplied 1ogathar,
Thus the foiowing differantial aquations ara linear

ay }d‘ey
1. Ay = 2 2. =
dn:+ | +3xdx+4-_.r 2

%I nmicwu Ll‘y Al Ivwuvaldiiivl
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squation (1) is linear first order differential equation while squation (i) In inear second order differential
aquation. The following equations are not linear

dy T dy w2 Yy
1 [—-j+f -5 2.2 3 s

e ——

cx

3.2.34 Leibnitze linear equation
The standard form of a linear equation of the first order, commonty known as Lelbnitz's linear
aquation, is

3—% +Py = Qwhere P, Q) are arbitrary functions of x S )]

To solve the aquation, multiply both sides by a’m &0 that wa get

d_'j"_ P ]"Pm = _rpdu. _E!_ Pex, Pda
dxﬁj +y{e’ " P) = Qe 13-“{}'9’ ) = qel

Integrating both sides, we et ‘J'EJM = Iﬂeipd‘dx +¢ as tha required salution.

Mote. The factor ejm' on multiplying by which the left-hand side of (1] becomas the diftarantial
coefficient of & single lunction, is called the integrating factor (1.F.) of the linear eguation (i).
Sa remamber the following:

IF = g™

and the solution is y(LF) = [Q(F)dx+ec.

ILLUSTRATIVE EXAMPLES FROM GATE

Q.27 Transformation to Inear form by substituting v = y' " ol the equation

%y-t- + pithy = aity™; n > O will be
dv
{a) % +(1=njpv=(1=n)qg 13)] & +{1=nlpv={1+nlq
{c) -3-13+|,’1+n:lp1;=[1—ﬂ,'lq ﬂd}%+{1+njm={l+l‘l}q
[CE, GATE-2005, 2 marks]
Salution: (a)
d

Given, Ey+p[t]y-qflnﬂ‘:n=-ﬂ
putting TR e

v dy

I:-:I'['_ . {1_'1}?-"' dt

dy ..

a - (1-n)y" dt

Substituting in the given differential equation, we get.

“_r:] = S+ oty = aty

e e T T T T e s acrorree
gcannea By CamScanner
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Multiplying by (1-n) y". we get

%v +p{) (1 -nly' " = glt)(1-n)

nowsincay' " = v, wa gel

(T}
E+{1 -njpv = (-}
(which is linear with v as dependent variable and t as indepandent vanabila)

d
Q.28 The sclution o the differential equation <X+ % = x, with the condition thaty = 1 5, _
£ X ¥ 1
il B et
2 x 2 x?
{c) ¥=3*3 (d) y= TR
[CE, GATE-2011, 5
Solution: (d) G
dy ¥ _ o
I:I:r:+:'-' =X y1=1
This Is a linear differential equation %+H=DmP=%andD.;
= Inlagrations factor
E,Ejm Bj"’"' gl
Solution is
y{IF) = [Q(F)dx+C
= yK = j{x.:tjdm-ﬂ
= yX = jk.!dh+[:
= ‘..I'lh: = g-pc
L ¥
- ¥=3*%
Mow y(1) = 1
C 2
. [, P
R g

So the solution is y = %z—-p-:f_x

Q.28 The solution of the differential equation EJE-I- 2xy =@ withy (0)=1is

(@ (1+xpe*

® (1+x)e™
€ (1-x)e**

) (1-x)e™
ME, GATE-2006, 1 e

%neu Py cdlrnoscdlirer
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soiwtion; (B)
Given egqualion
I::I_.!'I e
dx a4 -
This Is & leibnitz + z inear equation {i.e. a first order linear differential aquation)
Integrating factor IF. = gfws - g2
Solution is yiF) = [QOF)dx+c
ya‘z - ja“za"adx +G
-,.IE'E = K+GC
at X = 0, ¥ =1(given)
19"1" = U‘+ c
= c=
S0, the solubon is Y& = X+ 1
= y = e (% + 1)

4 5 =
(3.30 The solution of xs—:+'nf= %" with he condilion yi1) = = is

¥ 1 axt 4
(&) yegrs {b) =+
X2
{e) 3’=%+1 (d} F=?+1
[ME, GATE-2009, 2 marks]
Solution: (a)
Given differential equation is
dy =
Id:-: +y =x
7 ¥, [ii] - (i)
Standard form of leibnitz inear equation is
dy o (1)
=% - Q
g TV

whara P and C function of x anly and solution is given by
y(iF) = [QF)dx+C

hers, integrating factor (LF) = @™

1
Here in eguation (i), s and Q =
1
LE = Effm =ag"*=x
Solution yix} = [Xxdi+c i
¥®
¥x = —Er-- + G

Scanned by CamScanner
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B
given condition = g

&

maans at x=1ly=¢g
= E:‘Iué+¢

6 _1_,
= wx ETET
Therefore ¥X = §:+1

1
= Yo

: dx _
Q.31 With initial condition x{1) = 0.5, the solution of the differential equation, tE+ %=l jg

1

(a) :=1—§t (B} I=IE—E
2 e
€ x=% (d) x=3

[EC, EE, IN, GATE-2012, 1 mark]

Solution: (d)
The given differantial egusation is

1
I-E-d- % =t with initial condition x(1) = 5 which is same as

dx x

—+— =1
- R
Which is alinear differential equation
dx
Whera P= % and Q=1
| _I%I-rl
Intagrating factor = g
i f = HWIl‘-—.t
Solution is
x(IF) = [Q.(F)dt+C
x-t= [11.d+C
i = §+E
t C
X =2 g
E+ t
1
Put x(1) = —
(1) 5

Scanned by CamScanner
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S0 |x= is the

h |-

0.32 The malrix form of the linear syster

d|x 3 -5

@ El?}b[" 8
ajx| |4 -5
© &y '[3 B

Solution : (a)

Q.33 The general solution of the differential eguation gy

@) y+sinfx+yl=x+c¢

x+

2

y

)=

(c) c:ns[

Salution : (d)
Let

Scanned by CamScanner

L
1
c

1 1
2 2
0

I

sOlution,

b s o
Ii @ aht=fs S

[ME, GATE-2014 : 1 Mark, Set-1]

dr

G ~Hnh

dy

I = 4y + By
E[I} 3 -5]|x
dtly] = |4 ﬂ]{r}
d |x 3z =hy
dtly] = |4 +B'y:|

= = Cos{x + ¥) , with ¢ as a constant, ig

r+y

{b) lan[ >

e
+ 0 (d) IEH[%]IJH-E:

[ME, GATE-2014 : 2 Marks, Set-2]

2 =x+Y
dz dy
el PR
dr =

% _1 = cosz
s =
| & _ . et
1+ co5Z
BIE:E{E]ﬁ-"—' = L+ G
2
£
tan E] = x+0C
laﬂ[:;h’] = x4+
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Q.34 The solution of the initial value problem — == —2xy, y0)=2 is
(@) 1+&™ (b} Eﬂj
) 1+e” (d) 2e
[ME, GATE-2014 : 1 Mark, Sot.1)
Solution : (b)

IF, = %% _oF
Multiplying LF. to bath side of equation (1)

a‘?[:—?m] =0

d
= w0 Y] =0
e’y = C
fream the given boundary condition, C =2
iy =2
i - Eﬂ":

Q.35 Which ONE of the following is a linear non-homogeneous differential equation, where xand y
are the independent and dependant variables respectively?

dy s
(@) 5 +Xy=e

@ Leny=e”

] Solution : (&)

Genaral form of inear difterantial equation

i
Oy option (a) & in this form.

.38 The solution for the differential equation

dx
—_ =1 1
ﬂtl.u E

(@) t24t+1

) -31- ginat + cos3t

N

Scanned by CamScanner

x

di?

(b) %+w=ﬂ
(d) %4-3"':0

[EC. GATE-2014 : 1 Mark, Sei-3]

ﬂ+py = @ whan P and @ can be function af x.

= -8 x wilh inftial conditions x(0) = 1 and

. 1 2
gin3t+— cos3t+ —
(b) + 3 cos3t+ a

(d) cos3t+1
[EE, GATE-2014 : 1 Mark, Set-1]
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golution : (c)
d*x d_
i Qi = B
%*m = 0 (D2 + G)x =0
Auxiliary equation ismf + 9 =0
m = &3 .
x = C,cosdt + C, sindi (i)
X0 =1 le. x=1whent=0
1=Cy
%— = =3C, sin3t + 3C, cos3l - ()
¥{0) =1 iex'—1 whent—0
1
1= :-’Cz EE:E
¥ X = COB3l+—8n3t
3.2.3.5 Bernoulli's Equation
The equation %-ﬁﬁr =" e (i
where P, O are functions of x, is reducible to the Leibnitz's linear and is usually called the Barnoullis
equation.
i = .
Ta solve (1), divide both sides by y, so that y d—iwr = € .. (i)
Puty' ™ =z so that {(1-n) ?*‘g - %
1 dz
g 1] —_— Pz = 0
2~ Eq. (i) becomes o |::|J~:+
of SE+F‘|:1-HJI = Q{1-n),
.
mimrsLaibnm'snmuinzanduanmmwadmw.
ILLUSTRATIVE EXAMPLES
Example:
Solve % -rjl'-‘i'_-'ﬂ
Solution:
Dividing throughout by ¥°,
Wt o4 )
yr ¥
Ay &

PL.I'[‘;I‘EFI.EDH'IEI'I _E':.I' i b

gcanned by CamScanner
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et T=d
Eq (i) becomes e +7
or 92 97 = -8
ox

which is Letbniiz s linear im Z.

IE = o™ _ g )
». The solution of (i) is 2(1F) = [(-B)IF )dx+c
28 = [(-Bledx+c
g Gk St I (v2ays
= -.,-'2 = 4% m?‘l }
= y = (4+ce™) @

3.23.6 Exact Differentlal Equations
1. Daff. A differantial equation of the farm M{x, v) dx + N{x, y) dy = 0 is said o ba exact if ijs Iafi
hand member is the exact differential of some function ulx, y) i.e. du = Mdx + Ndy = g_jq
solution, therefore, isulx, y) = ¢.
2. Theorem. The necassary and sufficient condition for the differential equations Md:x + Ndy = Dig

he axact is
¢ e
ay o

3. Method of solution. It can ba shown that, the egquation Mdx + Ndy = O becomes
d[u+fl'{1_.r;mr] = 0
Integrating u+ [iydy = 0
But T Ide and f{y) = terms of N not containing x.
» The solution of Mdx + Ndy =0 is
[ Max + [ (terms of N not containing x) dy = ¢

o
Note: While finding IMdH. ¥ is treated as consiant since we are integrating with respect iox

(Provides of course that the equation is exact. i.e. % = E.}

ILLUSTRATIVE EXAMPLES

(=5
S:?he[x3+3w?}dx+{3ﬂy+yﬂ}ﬁynn.

Solution:
Step 1: Test for exactnass
Hers M = x? + 3y and N = By + 47
ah i
———— =B,H: B .
¥

Thus the equation is exact and ite solution is
]'Mdﬂ + J{TEFHE of N not containing xidy = ¢

!canned by Camscanner
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e
which is [(x® +3x/")dx + [y =c
4 Fa
—_ :'{_ =+ 3:: 5,1 + £ =

& g
= %{I“+E:?yz+~_.r":| -c
3,2.3.7 Equations Reducible To Exact Equations

Sometimes a differential equation which is not exact, can be made so on multiplication by a suitable

factor called an integrating factor, The rules for finding inegrating faciors of the equation Mdx + Ndy
=0 are as given in theorem 1 and 2 balow:

In the equation Mdx + Ndy =0
M an
Theoram 1: i Ei"_'.:]ﬂ be a funclion of x only = f{x) say, then gjr':‘"" is an integrating faclor.

N i

Theorem 2: if i"’m—a" be a function of y only = () say, then /"% is an integrating factor

ILLUSTRATIVE EXAMPLES

Zsin (v2) and N = xy cos (y7)

Example: 1

Salve  2sin (y®) dx + xy cos y¥ dy

Solution:
Step 1: Here, M

aN
Step 2: Tes! for exactnass % 4y cos (y*) and ==y cos (y)

ahd i
P —
So 5 -
and hence, eguation 1S not exact. Sn we have tofind integrating tactor by using aither theorem 1
or thaoram 2.
Step 3: Find an integrating factor: iry thearem 1
ahd dN ;
@ ax _ dycosy’-yocosy’ 3
ot N Xy COS X

Which is function of x only. So thearem 1 can be used.

&5
N L

Multiplying throughout By LF.. we get
o3 sin (y¥) dx + x*ycos ¥ dy =0
This equation will suraly be an exact equation. No need o check that.

—

R o

o e

-

sme

e ————
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Step 4; General solution:
_[de + J'I;taims of M containing xdy = ¢

Which is [2x¢" sin(y*jdx + [Ody = ¢

%x‘ sin(y?) = ¢
Stap 5: Now to find the particular solution of the initial value problem:
Since W2) = &
2
=4 L L
2 2
== C =8

_ -
So particular solution is —x* sin(y®) = B

2
or ¥ ein(y?) = 18
Example: 2
Sobve (xy® + y) dx + 200 + x + yY dy =0,
Solution:
Hexe M = xy* + ¥, N = 2(x%* + x + y*)
1{aN oM 1
E{E"W] i S

%, which is a function of ¥ alons.

LE = o™ _gomr oy

Multiplying throughout by y. It becomas (v + vEidx + (2%% + 2xy + 2y¥idy = 0, which isan
exact equation.

- The solution is %x’y“ + 5y + %f‘ =c.

3.2.4 OrthogonalTrajectories
3.2.4.1 Definitions

Two families of curves such that every member of either family cuts each mamber of the other Family
atright angles are called orthogonal trajactories of each other.

The concept of the orthogonal trajectories 15 of wide use in applied mathematics especially in fiskd
problems,

For instance, in an eleciric field, the paths along which the current flows are the orthogonal trajectones
of aguipotantial curves and vice versa.

In fluid flow, the stream lines and the equipotential lines are orthagonal trajgctonies.
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Example: 1
Find the

Given family of cunves XY =
Differentate w.ri, "z H

dy
Xl 1 =
w dx‘f"p' 1 0
(8}4
lace —L by — =%
Mow rep Dﬂm'ﬂ? o
= IE =
dy =¥
By variable separabia, frx = [ydy
—2- = f2—+h
=4

3.2.4.2 Orthogonal trajectory of polar curves
Exampla: 2
Find the othogonal trajectory of family of curveas i
= A
Solution: S
Given family of curves ™ = a" sing
Differertiate w.r.t. "8’ and aliminate 'a’
ne"" 1% = a" cog g x n
Divided equation (i) by equation (i)

nr""'E
g8 _ &' cosnBxn
& a" sinnd
dr 1
E? = ﬂﬂ-lﬂﬁ
Dilferential equation represents given family of curves,
o

dr
Replace Ehy - -

;[—Fﬁ] = cotnd

)
dr

ji dr
r
ogr = 2 oge
: ||:|g|'" = bg[ﬂnmﬂrﬂ]
f b f = ancosng
i& the reguired orthogonal trajectory.

= coinb

—ftan ne de

Mernnea py camscanner

orthogonal trajectory of fgmi
Solution: amity of Curves XY = constant,

** - y%= k, is the orthogonal trageciory of given family of curves

)

-{ii

.. i}
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3.2.43 Newton's Law of Cooling
Definitions

The temperature of a body changes al & rate which is proportional to the differance in tae,

batween that of the surrounding medium and that of the body itsall

The differantial equation is " —k(@ - 8,)
by variable separable jadﬂa, = [-kat

= logle-8) = ki +logc
= B-8, = ce™

i5 the solution of Newton's law of cooling.
Example: 3

MADE EAsy
—

F"Har_h,_,ﬂ

A body originally at 80°C cools down to 80°C in 20 minutes, the termperature of air baing 4080 Whai

will be thie ternperature of body altar 40 minutes from the original?
Solution:
According o Newion's law of cooling

a3
— = =k[8 = 4]
3 { )
| W . ~ [t
B =40
=3 [ogid - 40) = -kt + log
e 0-40=ce™
Put i =0, 8=80"inaquation (i)
We get, c= 40
Put, t = 20min, 8=60°
1
k= —I
Then, 20 oge
1
— g2
By equation (i, 8= 4434-405[ 2™ }
Put, t = 40min, thand=50"C

ILLUSTRATIVEEXAMPLES FROM GATE

Q.37 A body originally at 80°C cools down to 40°C in 15 minutes when kept in air at a temperaturs dl
25°C. What will be the temperature of the bady at the end of 30 minules?

(a) 362°C (b} 315C
(e) 227°C (d) 15°C
Solution: (b)
i -k (6-6,)
This is in variable seperable form separating the variables, we get,
de
oy = kit

%I nmicu lJy waliiovaliiivcli

[CE, GATE-2007, 2 marks]

(Mewion's law of coding)
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e
.
" [~kat
=4 n{@-8) = - +C,
24 -8, = Ce¥ (whereC=ev)
B -} Hu+ E_B'H'I
given, 8, = 25°C
Mow al t = 0, 86=60
B0 = 25+ Cet
= C= 35
8= 254+35eM
at =15 minules 8 = 4rC
: A = 25+ A5glh=15l
= E,-'IEIH. = % 2 “]
Mow &l 1= 30 minutes
8 =20+35e™ 225435 (")

Mow substituting 8 %% = % from (1), we get,

3
B=25+35x [FT = 31.428"C = 31.5°C

3.24.4 Law of Growth

The rate of change amount of a substance with respect to time is directly proporional lo the amount
of substance present.

. dx
.8 %
9% ok (ks0)
ot
dx _ Ikm
X
= logx = ki +logc
- x = ca* is solution of law of growth
Example: 4

The number N of & bacteria in a culture of grew at a rale proportional (o M. The value of N was infdially

1
100 and increased 1o 332 in one hour. What would be the value of M alter 'I.E hiours?

Solution:
dN
According to law of growth, £ M
Solution is N = ce” i
Put N = 100 and t = Qin equation (i) =
C=
wTr:nngtl N = 100 &% i)

Scanned by CamScanner



o P 2
T

306 | Engineering Mathematics for GATE and ESE Prelims MADE g,
—
Puft M= 332, | = 1 in egquation i}
830 - 100"
gt = 3.32

Fult= = in equation (i

2
Then,
3.24.5 Law of Decay

Definitions

s
M= 10087 =100(3.32°7 =605

The rate of change of amount of substance is directly properticnal to the amount of eubstanes Present

im,

Tha differantial equsation is

-
=4

Exampio: 5

o

— X
dt
(s}
— = -hx (k>0
= x (k=0)
dx
— = ~[kdt
= =)
log x = -kl + loge
¥ = ce™is solution of law of decay.

|f 30% of radin active substance dissappeared in 10 days. How bang will take for 90% of it to disappesr?

Solution:
According to law of decay

Pul.h::'lm,[:ﬂ

We get,
[har,

x = Cca-kl i)
100 = gt
c= 100

¥ = 100a™

Put x = 70, t = 10 in equabion (i)

Then,

. Eqguation (i) becomes

Put, x = 10 in equation (i)
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3.3 LINEARDIFFERENTIAL EQUATIONS (OF n™ ORDER)
3.3.1 Definitions

Linear differential equations are those in which the dependent variable its derivativas 0GGLT onlyin
the first degree and are not multiplied logether. The general linear differential squation of the n'" order

ig of the form

d'y Ay Py

—— ‘H:' of P =
G Pt e gyre T Pl X

whare py, Dg. .- . Py 8nd X are funclions of x only.

Linear Differantial Equations with Constant Coefficients are of the form
dy +ky E':l +hig dy
d:}t" mn—l d:Tl--E'

whers K,, Ky .... K are constants and X is a function of x only. Such squations are most important in

the study of electromechanical vibrations and other engineering problems.

1. Theorem: If y,, ¥, are onky two solutions of the equalions

+othgy = X

dy 'y - i .
= + - + kg e +..+y =0 o i)
Then .Y, + Ca, ¥, (= u) is also iis solution,

since it can be easily shown by differentiating is that $+h1£—::~+ et Kl =0 . (1)

2 Since the general solution of a differantial emuation of the nth order contains n arbitrary constants,
it follows, from above, that If ¥y, ¥a ¥g. - ¥, @r€ N independant solutions of (1), then
C,¥; + Cafa + - + C¥ol= u) Is its complete solution.

3, Ify=v be any particular solution of

ﬂ+k1 wﬂ‘l"r+...+hn',' = A .. Lik)
" dx™!
then %ﬂ':;‘:h-ﬂﬂu =% o (i)

=1
Adding (i) and (iv), we have d‘g; W)k, Jﬂ‘f“j”}+,,_+ k. (u+v) =X

This shows that y = u + v is (ne complete solution of (iii).
The part u is called the complementary function (C.F.) and the part v is called the particular

integral (P.1.) of {iii).
. The complete solution (C.5.)of (lii}isy =C.F. + F.l.
Thus in erder to solve the equation (i), we have to first find the C.F. i.e., the complementary

function of (i), and then the Bl i.@. a particular solution of ().

. d & &
Operator D De = —ete, soinal
perator D Dencing o o ‘o’
L D,.ﬂ =D &% _ pay elc., the equation (iii} above can be written in the symbalic form
dx At Y'ma

(D" + kD1 4+ ly = X,
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Dy = X,
where [{(D) = D" + k, D' + _ + k. ie a polynomial in D.
Thus ihe symbol O stands for the operation of differentiation and can be treated much the oo eas
an algebraic quantity i e. (D) can be factorised by ordinary rules of algebra and e facior g .
taken in any order For mstance

dy dy
E*E"j‘;_’h

(O + 20 - 3)y

(D+3)(D-1)yor(D=1) 0+ 3y
3.3.2 RulesforFinding The Complementary Function

=1 d‘--?
To sotve the equation d—1-£+h,d ?:"'“:- df’:’+ +ky =0 |

whare k's are constants.
The equation (i) in symbodic form s
O+ kD' + kD24 o +hy = 0 fiij
Its symbolic co-athciant aquated 10 2er0 18,
D'+ k D'+ D24 4k =0
5 cailed the auxiliary equation (AE ) Letm,, m, ., m_De ils rools. Mow 4 cases anise
Casa 1. If all the roots be real and different, then (i) is equivalant to
{D-m}{D-m). {D-mjy =0 iy

Now (i) will be satisfied by the salution of {D - m,Jy = O, i.e. by 3"—3 —my =0

This is a Leibnitz's linear and 1F = a™™"*

2. Its solution is ye™ m g, leym cg™

Similarly, since the factors in (i) can be taken in any ander, it will be satisfied by the solutions of
D-my=0{0-m,)=0etc,iebyy=ce™ y=ce"" etc
Thus the complete solution of (ilisy = c.@™ + 8™ + 4. g™ i)
Case |1. I! two rools are equal (1L.6. m; = my). then (iv) becomes

¥ = lg, +c,)a™" & L = i

¥ = C&™ o™ & +c g™

[: e, + c, = one arbitrary constant C]
Ithas anly n- 1 aritranry constants and ig, therelore, not the complele solution of (i}, In this case, we
procasd as folkows:

The part of the complete sclution coresponding o the repeated ool is the complete solution of
(D-m)[D-m,ly=0

Pulting (D -m} y = 2, Nbecomes (D-m.)z= 000 E—-rn-,z =0
A

This is Lefbnitz’s lirear in z and |F = g™
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- Its solution is ze™™ _ o
i

nr:: E 1111!

12

Thus D =-m

Iy = d
1 2= i ¥ i
Ca™" or el ca™ o (V)

Its LF. being @™ the solution of (¥) is

—m,:; —
e = jcg"’"ﬂﬂwdx +0y

= ¥ =
= (CX 4+,

Thus the compiete solution of (i) is y = (2% + g ) gme 8™ 4 g™
if, howaver, the AE. ol B0
has three equal roots (le-m, =m, = m.}, then the bl Bk

Y = |:1:1_:2+c w4 i My
X +Cy ™ 2o, 0™ 4 &
Case lIl. If one pair of roots be ilrnuulnnr,r i.& . s
m; = a+ip,
then the complete solution iz

= ek =
Y H1E‘[ ﬁ " -|--|:‘:EE[“ 'ﬂ':“: + Eagm.\ﬂ s +C|.|Ew

8™ {ca® 4 c.e Py, Cy8" Y 4. +,e™

= &™[c (cos Bx +i sin fx) +Cx(cosPu—isin )] +c.e™" + .. 4ce™
[+ by Euler's Theoram, g® = cos B + i gin 8]

8™ (¢, cos fx + ¢, sin fx) + c,e™* +...+c.pm™"
whera G, =g+,
and G, = ilc,~c,).
Case IV. If two pair of imaginary roots ba squal i
r'|'|r = r'I'IE, = + I-ﬂ‘
ma_ — m“ = [[—iﬂ.
then by case |I, the complete solution is
y = &7 [(ct+ ca)oospx+(cx+c,)8in Bx]+ .. +c 8™,

ILLUSTRATIVE EXAMPLES FROM GATE

. dy _dy . dy (m . .
0.38 Th&saiulmcfa?- +EE; + 1Ty =0y =1, E[E] =0intherangeD < x < 3 is givar by
, 1.
() E-x[cusilx +%5rn¢:¢] (o) y(cnsh—Emndx]
4| ros x-lginx (d) e~ {:0541{-15'!14!
c) e 4 )

[CE, GATE-2005, 2 marks]

|
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Solution: (&)
P.Ii * Eg!'r— + ‘ﬁy = 0
de® - o=
y({0) = 1
dy( =
dx 4] 1
This is a linear differential equation
P+2D+17 =10
D = =1+ F |
y = G + G, =g+ Ce
= e*[C,[cosdx + i sindx)]+ Coloos(—4x) + i sinj-4x)]
= e*[[C,+ C,) cosdx + (C,~C.) i sindx)]
I: + I: == Eaand{ﬂrl:?}i:ﬂ‘
= 1 : = &*(C,cosdx + 0,y sin 4x)
Wil = 1
il:m 1 =e”¢Caﬂusﬂ+Eqanﬂ]
= I:H = 1
EE = g (-4C,sindx + 4G, cosdx) - 87 C4c0o8dx + C sindx]
= @*[(-4C,-C Jsindx + (4C, - C,jcosdx]
gﬂi alx = E is 0
- (4G, ~Cg o™ = 0
G, = G
Cy 1
s S
Ca = 1 ﬂn’d ':;-l - E
y = 8*{cos 4 + % sin 4x)
£1.39 The general sclution of % +y=0is
{a) y=Peosx+Qsinx {DJY=P$:
= P sin x (d) y = P sin‘x
ik [CE, GATE-2008, 1 mark]
Solution: (a)
DE+1 =0
Do +i=0<+1i
». Ganeral solution s
y = 8™[C, coe{1xx) + C, sin{1 x x}]

C, cosx + C, sinx = P coax + 0 sinx

whara P and O ara somea consiants.

g
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Q.40 The sclution to the ordinary differantial efuation Ezi + ﬂx -8y =0is
dx?
(b) y = n.ﬂr" + 8%
(d} y=ce™+ge
[CE, GATE-2010, 2 marks]

{ﬂ] Y o= I:.IEI'“ + Gyl Zn
(€ y=g,e™ 4 g o

Solution: (c)
dy  dy
dx? | dx oy -
D2 + D— G = (8]
iD+3)(D-2) = 0
D=- =
< Solution is y = ci-ﬂ?ﬁ«?ﬂi

Statement for Linked Answer Questions 41 and 42.

The complate solution of the ordinary differential quation % p% +ay =0isy =ce™ +c, 8%,

Q.41 Then, p and qare

{E] F"=3.'El‘~'3 {b}Fl:ﬂ.l:ln-l
EG}p-#.q:E {d] pP=4,g=4
Solution: [¢) [ME, GATE-2005, 2 marks]
Ghven eguation is
Fy | _dy
ax? Pax T =0
(CP+pD+qgly =0
i F+pD+g =0
Its solution ig Y = 1'.':1 E'"-rEEE':!"

Sotherools of F + pD +q =0area=-1andf=-3
Sumofroots = =p=-1-3=p=4
Productofreols = g=(-1){(-3)=qg=23

Q.42 Which of the following is a solution of the differential aquation d?—g * pgi * {q+ 1] =

dx ox
(a) & ib) x e
c) xe® () xie® [ME, GATE-2005, 2 marks]
Solution: (c)

Given equation is
dy , 3
— = +{a+T = 0
d:-;‘; P (g+1)

[D2+PD+{g+ 1)}y =
|:| =

CII:

(D% + 4D + 4)y
DF+40 + 4
(D+2F =

83

n
3 B e R e B 7 R A
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D=-2-2ay={cisc,)e®
aut of cholces given, y o= @
is the pnly anawer in the requred form (Le. (c,x + e.)e ™ putting c, = 1and ¢, = O}

.43 Givan that X + 3x = 0, and x(D) = 1, =(0) = 0. wha isx(1) 7

(a) -0.89 o) ~0.16
e 016 (d) 099
[ME, GATE-2008, 1 mark)
Solution: (b)
¥+3x =0
Auxlilary equationis D°+3 =D
L8 D= +43]
i x = Acosy3t+ BsinJ3t
at =0 x=1
= A=
Now, . = JABcos 3t - Asiny3t)
Al t =0 % =0
= B =20
0. £ = cosy3l
x(1) = cos+/3 =099
Q.44 Itis given that y* + 2y + ¥ = 0, y{0) = 0, y(1)=0, What is y (0.5)7
ia) 0 B} 0.37
[c} 082 ) 1.3 [ME, GATE-2008, 2 marks)
Solution: (&)
v +2y'+y =0
(D +2D+ 1)y = 0
= DE+20+1 =10
= O+1¢ =0
= D= -1 -1
'= y = [C, +Cx a*
Wy =0 = 0=(C rﬂ._,{ﬂ]}a'“‘
= C, =0
Wil =0 = ﬂ:fﬂ1+|:?:|ﬂ"
- C,+C, =0
= C,=0
- y = {0+ Oxje * = 0is the solution
y(05) = 0
Q.45 For the differantial equaticn $+E':—T+Bx-n with initial conditions x{0)=1 and %Lﬂ?-
the solution is
(@) ult) = 20 - e® (b) «(t) = 26~ e
g} wit)=—a® 4+ 2o d) xl}=a® 4+ 28"
e i [EE, GATE-2010, 2 marks)
L- __-w"'frr"':
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Mﬂfﬂif
p—
agiution: {b)
éx | o
Givien d‘t? a + =0
40) = 1 and % 0
Cf+80+8 =0 e
(D+4)(D+2) =0
D=-2 and D=4
B Sﬂh.ltll'.'ﬂ"l |E- o= CT B_H+EE E'ﬂ
Since, A0} = 1
AT Ci+GCy =1 i
-?.j-? = —Ec1 E-H_iﬂzzﬂ—dl
Since, [d_:-:} = 0, wa have
dl =i}
-2C,-4C, = 0 . {ii)
Solving (i) and (ii) we have, C, =2 and C, = -1
S0 the solution is %t} = 2a 8- g

Q.46 The solution to the differential equation % = H-E-E = 0 is where kis consiant, subjected to the
boundary conditions u(0) =0and L} =Ll is

X i 1-6‘“‘]
@ u=Up w v
1-g™ 1+ g™
(¢ “*u[m] (d) U'U[mﬂ:]

[ME, GATE-2013, 2 Marks]

Solution: (b)
Given differantial equation (0 —kDju =0 |
it is linear differential equation with constant coefficient

- Genaral solution is um CF+ Pl
CF: It is given by fim)=mf-mk=0 = m=0 m=k

CF =C, 8"+ C,e¥
b = Uge = C, + C2¢" )
k=0 u=0
C,+Cy=0 = C,=-C,
¥=Landu=U

Put,
Wea get,
Put,

o
il
=
1
r—
1
=
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.47 The maximum valua of the saluticn y(1) of the dilfarential equation v(1)+ 1) . g with
H'H||I-"
conditions y{0) = 1 and y{0) = 1, lor1201s
@ 1 oy &
c) n (d) 2 [IN, GATE-2013 . p
Solution: (d) Marky]
yiti+¥) = 0
140 =0
D= =i

y = C,e*"+C g™
A cosx + B sinx

w0} = 1
1= Ax1+Bx0
As 1
¥y = —A sinx + B cosx
yid) = 1
1= -Ax0+Bx1
B=1
S0, ¥ = COSX + Sinx
for maxima,
¥ om =iy + cosx = 0
sinx = coax
= = 45°
¥* = ~Cosx - sinx

Y <0forx =45 . maxima
vimax) = cosd5®+ sinds® = |, | . 2 -

B BB

Q.48 A solution of the ordinary diffarential aquation

=
)= —?EE. The value of %!F—{m i5

ot
_&EEJ,E,E;.';;M =0 8 such that {0} = 2 ang

[EE, GATE-2015 : 2 Marks, Set-1]

Solution; (-3)
F+5D+6=0
D=-2 -3
W= e spe™
Given, W0l =2
= CytCy=2 0
U= 1-3e
[
= O e . [1-38
F [ & ]
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! =4 L) +ﬂ;,-=35--'| A
| Now solving equation () ang {in), we ael
; IC-‘.I =3
. = =]
; Substituting in W), we get
W)= 3 _g¥
Now o

(%)
atien

= -Be 4 3

E—E-l‘ﬂ:-ﬂ

dx

Q.48 A solution of the fallowing differential equation is given by % - 5*1'2-' +6y=0
x

(a) y=e+a
() y=e4g™

Solution: (b}

AE =D"-8D+8
(D-2}(D-3)

D

¥

(b) y =82 +e™
=%

[EC, GATE-2005, 1 mark]

(@) y=6""+8

= [

=0
2.3
B 4 g

Q.50 Afunction nix) satisfies the differential equation M - ﬂﬂ = [ where L is a constant. The

dx? L2

boundary conditions are : n{0) = K and ni=} =0, The solution (o this equaton is

(&) nix)= K exp(x/L)
(e} nix)= I{*.&:-:p[-x.fl.:l

Solution: (d)

dx® L#

s Solution is

= C,e” =
— ]

= The solution Is i)

“Scannea by Lamscanner

& nfx) _nlx) _

(b} nix)=Kexp(-x/+L)

(d) nix) = K expi-x/L)
[EC, GATE-2010, 1 mark]
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(.51 A systern described by a linear, constant coefficiant, ordinary, lirst order differantig) -
has an exact solution given by y(t) for t > 0, when the torcing function is (1) and the if'll[q:
condition Is y(0). If one wishes to modify the systam so that the solution becomgs 291 for
t = 0, wanead 10 .

{a) change the initial condition to ~y(0) and the forcing Ium:;t!an to 2x(1)
{b) change the initial condition to 2y(0) and the forcing function to —x(t)

(¢) change the initial condition 1o jy2 y(0) and the forcing functicn 1o /2 xit) |

(d} change the initial condition ta -2y(0) and the foreing function 1o -2x(t)
[EC, GATE-2013, 2 Markg)

Solution: (d)
T—I~”+m(t:| = x(t)
Taking Laplace transform of both sides, we have sY(s) - y(0) + k¥(s) = X(s)
Yiss + K] = X(s)+ y(0)
_ Xis) | yO)
0 R = vk sk
Taking inverse Laplace transfonm, wa nave
yit) = e¥x(l) + y{O)e™
So If we want -2y(t) as a solution both x(t) and y(0) has to be multiplied by -2 hence change
x(t) by —2x(t) and yi0) by -2y(0).

.52 The solution of the differential equation %+E%+y=ﬂ with W0) = (0} =118
(a) (2-1n¢ (B) (1 + 20"
fc) (2 + fe' {d) {1-2h¢
[EC. GATE-2015 : 2 Marks, Sat-1|
Solution: (b)
(D2+2D+1)=0
D=-1,-1
i) '_'|:f-:'l1'|'‘“r-‘-l'!['.:"g_|r
Vith= Coe +(C, + Cuf) (-e™)
w0} = y(0) =1
Fromhere, C,=1, C;=2
= yity = (1 + 2n)et

.53 Consider the differential equation d:':irj +3 d:;{t” + 2x(t) = 0. Given »{0) = 20 and x{1) = 10/,

where @ = 2.718, the value of x(2) is
[EC, GATE-2015 : 2 Marks, Set-d]

Solution: (0.8553)
D?+3D+2=0
O=-1, -2
dy=C,e'+C, %

()= Do’ 40,0
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ﬂ'11-|:}‘?.e1=m
E1+{_'.'.‘?=3]
Fromhere, C,= —=—20 . o _ (108
=T 1B

Q.54 A function ¥(f). such that WD) = 1 and W1y =

L)
i)

@ (2o oo

-1 P |

de’', is a solution

£
%}+E%+FED ThEﬂ_'!{E}IE
(a) 5’ -
c) Ta! E; ?:_?
Solution; {b)
Auxiliary equation,
M +2m+1=0
me=-1, =1
y=le,+ gl et
HO) =1
e c, =1
y=(1+gle’
w1} = 3’
= {(1+({c)e? = 3¢
=2
y={1+2he
W2) = 5a2

of the differantial agquation

[EE, 2016 : 1 Mark, Set-1]

Q.55 The solution of the differential equation, for t > 0. Y+ 2¢00 + B = O with inital
conditions W0} = 0 and y(0) = 1, is {L{f) denotes the unit step function),

{a) te'iff)
(€) (& '+ hafjAn)

Salution: (a)
Tha differantial equation is
YU+ 2y + yit) = O

[B) (e te )
d) &'ul)

S0, (s2¥(s) - spl0) — y"(0)) + 2[s¥(8) - w(0}] + ¥(8)

So,

Given that,

gcannea 5y CamScanner

_ 5v(0) + y'(0) +2(0)
Mg = (8 +25+7)

yi(0)=1,0)=0
1

ﬂ_ﬁ:l - {5+1}1

wh = e Wi

[EE, 2016 : 1 Mark, Set-2)
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Q.58 Let {x) ba the solution of e differential equation =7~ 4=ty =0 with initia| COnitign

ay _ ;
W0y = 0 and _ﬂl:-:-u =1 Than the valua of 1) i3 .
[EE, 20186 ; 2 Markg
|&T-E']

Solution:
aE, mE-dm+d4=0
m=22
yu G+ Cx)
W) =0=2C, =0
y=C,xe*
¥y o= Czaﬂ" + 20k &*
y(o) = 1
= GCo=1
¥=rxes
}-'{1} = & = 738
333 InverseOperator
1. Deafinition, I'{_[1_':}| X s that function of x, not containing arbitrary constants, which when oparg GA
upan by fiD) gives X,
i 1
La, M —X} = X
}{I'{D:I }

Lo . |
Thus WI satisfies the equation f{D)y = X and is, therefora, its perticular integral

Obvigusly. f{D) and D) are inverse cperators,

5 2 .Ul:u: a jH{Ix
L 1
Bt 5% =y
Operating by D, BEtH = Dy
i.ﬂ_ }: = ‘d—.!lr
_ i
integrating w.rl. x y = [Xdx
Thus ]
=X = JEC
a 1
Dat ™ ™ [xe=gy,
Lat 1
'D‘:-E-I =¥

. i
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Operating by D - a,

1
{D_ﬂ] --ﬂ_--E_Ix = {[}_ahll

s § o dy | dy
= ——=ay.le—"-ay =
= ay o ay =X

which is a Leibnitz's linsar aquations,
= LF being & ™ s solution is

ya-ue _[Ka"“dx.
noconstant being added as (i) doesn't contain any constant,

Thus, = En =2 o -
Dok = ¥= e [xe

3.3.4 Hul&:FurFlndingmePartmllarlntegﬂ

Consider the tion TY ™y o
etuaon e +k1dx"'1 +Ks mn:-h.__-l-lfh}r = X

which in symbalic form is (D" + kD1 4 D24 L+ k=X

Pl, = 1 W
D+ kD™ 42 4k

Casa |, When X = g**
Snce Dt = e

(D" + kD™ +h JE™ = (@ + k.. 4k Jem
i.e HD)e™ = fla)e
Operating on both sides by

1 -
5 0 fla)e™

A0

2 1
o 8 = ﬂ:ﬂﬂﬁm
= by + f{a)

1 an 1 [-F x o

g™ = ——a" provided H{a)=0 v (i
D) el &

If fla) = 0, the above rule fails and we proceed further.

It can be proved that in that cass,

1 ax _1_ ax o =
w° -
T ox 1 , n
If ¥{a) = 0, then applying (2) again, we get }ﬁﬂ = ¥* ﬁﬁu. provided f(a) =0 ... (i)
and so on.

Quvaliicu vy vaililioval nicl

L . ke

—

- ——

gy i i L
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Exampla 1. Scive
ﬂ+ﬂd—ffﬂ'ﬁf = 5¢*
dn?  dx
Solution:
(DF + B0 +9)y = S o
Auwlliary quationis ~ D?+ 8D +9 = OorD=-3 -
CE = (G, +Cope™
E,EIH 5ﬂﬂ.i
P| = :I—-'.E'.'EJ.: e 5 ] = 16
OF +6D+9 (3)° +6(3)+9
e Ix
The complete solution s y = (C)+Coxde™" + 36
Exampla 2. Solve
&y .dy
F_Edﬂ; +89y = Bads
Solution:
(D =60 + 9y = Ba™
AE. is {DF-6D +9) = Dor{D-3F=0,orD=3.3
CF = (C, #C,xje™
1 3 1 | R 11 - ¢ a3 iy
- = Be"" = —-B-&"" =3x8
Pl = T apea " D-¢ ~3
Complata solution is y = (C, +Cyx)e™ + I a™
Case ||. When X = sin{ax + b) or cos(ax + b).
1 .
= —e G b) provided fl-a®) 2 0 o i)
) rm?nsln{ax +b) f{—azamn{m+ I p
If f{-a2) = 0, the above rule fails and we can prove that,
L-::Irr{xan.1s:+t:|-}| m ¥ sin{ax + b) provided f{-a®)= 0 v
HD?) {-a")

1 o :
I f{-af=0 g -ginfax+b) = X T sinlax + b), provided i"(-a) = 0 and soon.

Similarty, “—tﬁ,-}mam +b) = ) cos{ax +b) . provided f{-a%) = 0.

T O 1 e 9 S
If i{-a%) = 0, ) cos{ax+hb) = x f_{_ﬂg}cus{au + ), provided f{-a%) 2 0.

ks s , g @000 -
If F{-a®) = 0. T{DE}cna[ax+b]| X w_ﬂg}nm{gprn}p:m dad t"(-a%) # 0 and 50
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e
ILLUSTRATIVE EXAMPLES
Example 1. Solve
(D7 + 4y = sin 3x
Solution:
(D% + 4}y = sin 3x
Auiliary squation is D?+4 = DorD=x3i
CF = Agos2x + B sin 2x
1 gin3x i
Pl. = e—0 -sin3x: = = _gin 3%
D?+4 ; (-3f+4 5
Complate solution is y = A cos 2x + B sin 2 -%sinﬂx
Example 2. Solve
&’y _dy
—_— = €08 2%,
dx? ax Y g
Solution:
(D2+D+ 1)y = cos2x
Auxiliary equation is F+D+1 =0
D= 1243  CF=g?2 Acn5£n+551n@
2 2
Pl. = C0S 2K
0 +D+1
1 i
- — COS 2K = ——— 008 2%
(—22)+ D +1 b-3

D+3 D+3
= B =
D? -9 (-2%)-9

= _%{D+3]50523 = —%{-EEHEK+3W-EEIJ

COs 2%

Complete sclution is
y = g% Acus—i-Esm"‘lﬁx %[2 sin2x - 3c0s2x]
Example 3. Solve
(D2 + d)y = CO5 2x
Solution:
(D2 + 4)y = cos 2x
Auxiliary equation is Z+4=0 |
D=3+2% CF=ACos2x+Bsin 2
1 = L = i lEiﬂEh' = E i
Bl = DEJAcusEx x-Emsﬂx E[E dsmE:
. X
Complete solution is y = Acos 2+ Bsin 211--53"12::

Scanned by CamScanner



4 %

2 ESE Prell
322 | Engineering Mathematics for GATE and elims MADE EAsy
—

Casa ||l. When X = x™,

Here Pl = " = D) *.

1
. 3
f{D)
Expand [{D] " in ascending powers of D as far as the term in D™ and operats on «™ taq, by tanm
Since ihe (m + 1)th and higher derivatives of x™ are zero, we need not consider tarms bayong o

ILLUSTRATIVEEXAMPLES
Example 1. Solve
Find tha PI. of ‘T_':’+Qi = 4 b Mot od
o dx
Solution:
Given equation in symbalic form is (D2 + Dy = #2 + 2x +4,
1 1
Pl = e £ = — i
D{D+‘I]|:H + 2%+ 4) D|:1+D]- (%% + 2%+ 4)

= %H—D +0F = WX+ 2%+ 4) = E—L[:ﬂ"‘-i- 2 d— [Py 2)+2)

A
[(5® + 4px = % + dx,

Casa IV. Whan X = gt V. V being a function of x.
Il wig & function of x, then

He™u) = e**Du + ae®™u = e™D + a)u

. De™u) = a™D% + 2ae®Du + a? et%y = "D + af u
and in genaral, De™u) = e*D+a)u
KDNe™u) = e*fD +au
Operating both sides by 141 (D),

1 .y
oy (O = (a0 +an]
1
- T !-[E}[Euf{ﬂ +E.:H.I]
Mow put fiD+au = v
g = __-1_
YT D
50 that g%

1
GEEAE T

' e, gy o o 1
. rm}ta V) ———-r{ﬂ+ﬂ}‘ur
ILLUSTRATIVE EXAMPLES
Example 1. Solve

(D -4D+d)y = 45 g2

h
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i
solution:
(D~ 40 + 4)y = w3 a2
A.E. D*-4D+4 = D (D-22-perD=22
CF = (G + G, xje™
Pla 1 8 o _ o 1
DF_aD+a (D+2F - 4D +2)+4
- " 1 1 :lid -":5
= e x w1 X | ot A
o® 2 D{ d] ¢ 20
5
¥ = (Cy+ Cox) o™+ ei"j—m
Example 2. Solve
(DF -50 + Bly = 8" cos 2x
Solution:
(D -850 + By = & cos 2x
D°-5D+6 =0
i0D-2),(D-3) = D.orD=2.3
CF = C,e®+C,e™
1
Pl. = ————&" cos 2%
D® -8D+86
= @t ! COs§ 2%
{D+7 -5D+)+6
- 1 = H._l_ 2
e W-mwma = g _4_3D+E¢ns x
g ] 30-2
- —— 08 2 = - COos 2%
* 3042 EDZ—
S 008 2¢ = -n{an 2)cos 2
- 9(-4) -4

a* . g*
B - = =—(3 5in 2%+ C05 2%
m[—Emnh 2e0s 2x) ED{ }

a" 2
y = C,8%+C; H—E[Eslnixwusﬁx}
Case V. Whan X is any other function of x.
1
— X
ED} ” i ]
If KD} = (D -m,) (D —my,) ... {D —m,), resobving into partial fractions,
.-.:I——_~ Al + PIE G P Aﬂ
H:D:l -y D—m; D=-m,

Here Pl =

Pl. = A + AE +..+ An ]:ﬂ:
D =my D"IT!IE |::|—|'|"I|.|
= A, J':+A2D ){-1- +Aﬂ

.-r"|"|.F
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- A1-a'““‘_[}{ﬂ"""’d!+ Ba: g""f-"jxa'm?"{:lx 4o Ay 8T | ey,
Obs. This mathad iEEgEﬂﬁrﬁi ona and can, theralore, bﬂ"ﬂm'pln?El:l o obialn a ﬂar[iuuﬂrlntﬂmm .
gy Qiven case,

ILLUSTRATIVE EXAMPLES FROM GATE

Q.57 For dz_g + a% + 3y =3, the particular integral is

dx 1
1 - pek
@ o (b) ze
(c) 3e* (d) Co* s Co™
IMEi EATE'M, E mm]
Solution: [b)
&y, O 32
—_— g ey
dx? R ok
= {DE 40 + 3y = Bad
1
i i Plom — _%g%
Particular integral FriD+3 &
i _I-E“-" LEH
Mow gince, o) m Tal
EEI. EE:‘ EE;"

SoF.aza 155

: ot
Q.58 Consider two solutions x(f) = x,(t) and x(1) = [t} of the differantial equation o ) +xt)=0

dalt) Xfth  xa(t)
t = 0, siech that x; =0, 2 =1, The Wronskian Wit} = |dx,(t] dx.(t) atl=m2is
& o
(a) 1 by -1
(e} 0 d =2

[ME, GATE-2014 : 2 Marks, Sat-3]
Solution : (a)
Givan differential equafion in symbalic formis (D7 + 1) x(l) = 0
e AE 5D +1=0,

A D= =i
So, C.Fis
(1) = C, cost,
xglt) = C, sint
X, @) = c1 e
> %) = cost [It satisfies Exfi o "3']
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Bdl) = 0w G, sinl) (+ Cp=0)
ai.(Y)
a = C, cosi
dxa(1)
- ol 4 1
dt foy = %=
:ﬁ?l:” = gint
:{1{” -"[::-[1] [
— ; | cosl  sinl
) dey(t)  dxalt)| = |_sint cost
il i}
W) = cos®l + sinl =1

. . a’y
(.58 Find the solution of g.2 ¥ which passes through the crigin and the puinl(-'” E-%].

(@) p= lﬂ' -a™* |
5 (b) y-E{m' +a”)
t & L
(c) FEEIE -e”') (e} J-"=%ET+E"
[ME, GATE-2015 : 2 Marks, Sat-1]
Solution: (c)
iy
ac 7
= Oy =¥ (= ek = D)
(DP-1)y=0
P-1=0
D==x1
y=C,e+C 8"
Given point passaes through origin
= 0=C,+C,
C=-0C ()
Also, point passes through (In 2, 3/4)
=¥ % = C, &+ C, g™
3 C.
i —
gy
i C,+4C, =15 i
Fram (i) C, = - C,, putting in (il}, we get
— -—3{:2 = 1.5
G, =-05
C, =05
=5 y=05{e-e")
g —-g"

b i 2

R i A R e
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- dy
Q.60 Il the characterisiic equation of the differential eceation E:; + Euﬁ + v =0 has two Bqual

roots, then the vaiues of o are

(g} =1 () .0
(€} =2} (d) =12
[EC. GATE-2014 : 1 Mark, Set-z)
Solution : (&)

%+2uﬁ-+y = 0

The characieristic aguation is given as
mM+2em+1) = 0

-2t yio =4
my,my & —————
Since bolh rools are aqual i.e.
I'I"IlI =y lTI:.

S+ a4 -4 ; 20— v4n” —4
i S
Vaa? -4 = e -4

2yag? -4 = 0
407-4 = 0
o = 1

o= #]

Q.61 If & and b are constants, the most genaral solution of the differential equation

|- fT:-l- E% +x=0is
I (a) ae (b) ae™ + bie
!II. ! iz} ag' + bie! (d) ag™®
M [EC, GATE-2014 : 1 Mark, Sat-4]
;i: Solution : (b)
r',: The differential equation Is glvan as
$+23—T+x =0
[ y=C-F+P-1
Since Q = 0, L.e. RHS term is zaro, so there will be no particular intagral,
as ¥ om C-F
! d
Led Ti; = D0
S0, (07 + 20 + =0
(D+1) = 0
¥ = ae” + bte!

.

Scanned by CamScanner




b ol e iR L

e

Differential Equations | 327

MADE EASY
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82 The pgrtil:ular solution of the initial value problem given below is
III'?.'l" +12 + 36y =0 with 0) = 3 and diL =—36
R 1 dxlsp
(@) (3-18x)e" (o) {3+ 26x)e™
() (3 +20x)e® (d) (3-12x)e™
[EC, 2016 : 2 Marks, Set-3]
on: (&)
Bkl {DF+12D+36 =0
(D+B¥y=0
D=-8, -8
¥ =G +x Gl ™
y=Co¥s+ DE.'EE'B"
}l{ﬂ] =33= '::1 +0
- C,=3
y = -6C,0% + C o —BC, xg™
Y0} = =36
36 = 60, + &,
36 =-18+C,
-c‘n, - —1E

y=3g9_18xa™
¥ = (3-18x)e®

" ﬂ]
0.63 |+F=h}smﬂﬂasmnmmmmuenmdamr+ﬂy=n.y{ﬂ]l=D.J-f[E]=-E- H'an[] 15 __

Solutlon:
’ (0P + 8y =0

e +89 =0
m= £ 3

y= C, cos dr+ C,8in 3x

0= C

:)- 2

V2 = Ccos
=_‘.|l—'

d

—+ Casin—-

[ME, 2016 : 2 Marks, Set-1]

i)

an
Z

_'p' -...lr— 2sindx

o3
Q.64 The respective exprassions for complimenta
of tha diffarential eguation

ﬂ].r d’y

+3—-
dx" dx®

= 108" are

‘Scanned by CamScanner
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(a) [-c1+c21+t:35ﬂ~f3_+ﬂ4':1051'3-1’} and |3: ~12¢ +|::]

(b [c;..+|:,s|n1:3x+cﬂcusu"_] and |5yt - 125 + ol

(] 1c1+cﬂsln~ﬁ;+cqcﬂs\fﬂ_l and [3,-.- -125° +c.']

) EE1+L.ET+555I'I‘1J_;+C-‘4¢CIEHI'_} and [5¢* -12x% +¢] [CE, 2016 : 2 Marks, Sgt)

Solution: (&)

s |
D.E-i-!-{ﬂ'+3.[ﬂj"=1ﬂﬂtg , D= e

AE m+3m=0
= m (m? + 3) =0

= m=00++J3i
= CF =(C, + Cyx)+ G5 sin[u'ﬁx]ﬁ Cs t:m{u'ﬁ ;].

;3 ?{maf"] SD?[ {mﬁf [H —l

and Pl

n

[1_ e ].[ff- A —{:a}m] jj[ﬂﬁ:’? —E)dxd.:

2 2 ) aa qap
| @ L)
3.3.5 Hmmmﬂmﬂngﬁmﬂmtnhmm&m:ﬂm

dy . I Wy =X
a:‘F+h1F++h‘"1dx+kﬂy

of which the symbalic form i

D" +kD™M otk Dakply = X
Stap 1. To Find the Complementary Function
1. Writa the AE.
e D"+ kD™ 4+ 4k D4k = Oand
2 \Write the C.F. as follows

Aocts of AE. C.F.

1, my, My My...{real and different roots) |c,e™ +¢=,e""i=" +C, 8™ 4
2. m,, my,my...(Iwo real and aqual

roats) (o +Cax)E™ +o8™" +
i r*?'ﬂli'tl:I-:il]‘I 'r::::[';;’* S () +0ax + gx®)0™ + g 8™ + ..
4, :;:!;;r—;ii.;;..{a pair of 8™ (c,cosPx + ¢, 5infx) + ce™" +
; ::a_;'l.“_{:-:ﬂr;ﬂ”;} T e [(c; + cox)cospix +(Cy + Cyx)sinpx]+ cs6™

el
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—_—
step II. To Find the Particular Integraj

From symbalic form Pl = 1 ’
D" +kD™" 44k, Dk,
W PR
o) e
1, Wvhen X = ght

1
Pl @ —epgi® -
H'D}E putD = a,

= *-ﬁﬂ“. putD = a,

e .
X ,.{.D]E‘.Duln_a.

[fa)=0]
[f{a) = 0, Fla) = 0]

[f(a) = 0, "(a) = 0]

ard 50 on.
wharne (D) = dif. coeH. of fiD) wrt. D
F(D) = dif. coefi. of F{D) w.rl D, ele.
2. Whan X = sin{ax + b) or cos (ax + b).
PL = W!J sin (ax + b) [or cos (ax + b))
put CF = -a? [o(-a*)= 0]
= X 4!'{'13?! ginfax + o) [or cos (ax + b}
put ? = -a? [%{-a®) = 0. ¢'(-a®} 2 0]
= ¥ q‘{;’:l siniax + b) [or cos {ax + b}
put D? = -a? [¢'-a%) = 0, ¢"(-a) » 0.
and so on.
wherse (0% = diff. coefl. of D) w.rt. D,
& (07 = diff. coaff. of § (D) w.rt D, eic.
3. When X = x¥™ m being a positive integer.
1
Pl = @x"‘ = [ND)]" x™,

To evaluate il, expand [f (D)) in ascending powers of O by Binomial theorem as far as D™ and

operate on x™ tarm by term,
4, ‘When X = e®\ where V is a function of x.
1 1
i Iillu;Eﬂl.-—
Pl. fEﬂJE S
1 ; "
and then evaluate f{EI'—+E].v as in (1), (i), and (ill).
5. When X is any function of x.
Bl X
ST DY
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1
Fesolve i) Imio paiial fractions and operale each partial fraction on X remembering pry

o g™ [ Xe™
D-3a
Setp I11. To tind the complete solution:

Thenthe C.S. isy=CF = Pl

3.4 TWOOTHER METHODS OF FINDING P.1.

3.4.1 Method ofVariation of Parameters
This method is quite general and applies to equations of the from
Y +py +Qy = A S U
where p, g, and X are functions of x. It gives

Yo i
Pl = -y, [Ra=dx+y, [ a i

where y, and y, are the solutions of y” + py' + gy = 0 .. (liiy
- s ‘h ¥ Wi
B \r: '!"JE 5 calked the Wionskian o Wi Vs

ILLUSTRATIVE EXAMPLES

Example: 1
Using the method of variation of parameters, solve
¥' %y = BBCX

Solution:
Given equation in symbalic formis (Df + 1)y = sec x
(a) Tofind CF
Its AE. is D¥+1m 0,
oy 0= =i
ThusCF s ¥ = GCOBX+Cy8iNX
{b) Tofind P.I.
Herey, = COS X, ¥, = 5in x and X = sec ¥
Y1 ¥2| [|cosx  sinx
W = - = coa? 2 % =
3"1 !-"11; T CO8* X + 8N X =1
Yol ®
Thus, Pl = —ylj-i,—dx+ﬁj%d:
. _mﬂ}-mhxmxﬂx+smxl-ma:sacxdx

= =cosx [tanx dx+ sin % [ 1.y

= COSXINCos % + %50 x

Hence the C5.isy CyCOS X+ C, 8N X + cos x In cos X + x 8iN X

= lc; +In cos x) cos x + (g + x} 8in x
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e
3,5 EQUATIONS REDUCIBLETO LINEAR EQUATION WITH CONSTANT COEFFICIENT

pefinitions
Now, we shall study linear differential equation with variable coefliclents, which can be reduced to
linear differential equations with constant coefficients by suitable substitutions.
Euler-Cauchy differential equation,
An equation of the form

T
kﬂd;d-mf 5 K, 1x3—y+k,,1_.r Qix)

I'| |

ltcan be fﬂdlﬂﬂﬂ into linear differential equations with constant coafficients.
By taking x = €' {or) t = logx

d
LH- HEE
dy _dycdt 1dy
A, et - R
dx dtdx xdt
& .
=5 K dy
oy 5[19;:]=_ 1 imlﬂ[a]ﬁ
de  dx|x dt ]| w«f dt xdt]|dt|dx
_ ldy 1dya 1 [y _dy
Fm*;ﬁa'ﬁ[d dt
&y
=L -ae-1
Y ae Ll
Similarly, r"% = 88~ 1} (8 - 2)y and 2o on.

Substitute all these values in given differential equation, it resulis in a linear equation with constani
coafficients. Which can be solved as above methods.

Example: 1
. : : . ady _dy
Considar thea differential equation x E::_"' + 1‘:—: =dy =0

wilh the boundary conditions of y(0) =0, y(1) = 1, the comolete soiution of the differential equation s

o
{a) == (b) sin-—=
™~ X
) & sinn:?”i (d) e sin -
Solution: (a)
X2 “EFHEI_.‘,- =0 and yi@)=0.¥(1)=1
e
Chuoice (&) satisfies the initial condition as well as equation as shawn in balow
if y = ¥
= yi0) = 0, y(1)=1%=1
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Substitution in differantial equation

x?f_+ﬁﬂ._ay s wdexxdx-dxl=0
dyf  dx
4 = 2 = complate solution

Alternate solutkon:

(2% D2 4 xD - d)y

|88 - 1)+8—4]y

82=0 +6-4)

(85 - d)y
Auxilliary equation is m? -4 = 0
m= %2

]
oo o 9 a

CFisC, e + G, 6"
Solution is y = C,e+C,08=C,x?+C, % .-[.‘1_4.[;'?:2
Orne of the independent salution is x*

ILLUSTRATIVE EXAMPLES FROM GATE

Q.65 Consider the differential equation x* ﬂ 5 E” -y = 0. Which of the following is a scluionin

this differantial equation for x = 07

() & (b =2

&) Wx (&) inx [EE, GATE-2014 : 1 Mark, Set-2]
Solution : (c)

=
|
i
=
=
L]
&
[ |
|

“D? = Be-1)
(kD24 D -1y = O
[H:'H"1:|+H—1]"_|' =
@ -8+8-1) =0
| (@2-1y = 0
| Auxiliary equation ism® -1 =0
m = %1
CFisC,e®+C ¢
Solution is Y o= G,a”‘+C?af-G1r'+E!x=E,1+GgH
M
One independant solution is -;;
Another indepandent solution is x.

L2000
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41 INTRODUCTION

Many engineering problems may be treated and soived by methods involving complex numbers and

complex functions, There are two kinds of such problems, The first of them consists of "alemeniary

problems” for which some acquaintance with complex numbers is sufficient. This includes many
applications lo electric circuits or mechanical vibrating systems.

The second kind consists of more advanced problems for which we must be familiar with the theory

of complex analytic funclions— "complex function theory® or “complex analysis,” for shorl— and

with it powerful and elegant methods. Interasting problems in heat conducton, fuid fow. and
electrostatics beiong to this categaory.

Wa shall see that the importance of complax analytic functions in engineering mathematics has the

followirg two main roots.

1. The real and imaginary parts of an analytic function are soiutions of Laplace's equation in two
independent variables. Consequently. two-dimensional potantial problems can be treated by
miethods developed for analytic functions.

2. Most higher functions is engineering mathamatics are analytic funclions, and their study for
complex values of the independent variable leads lo a much deeper understanding of their
properties. Furthermore, complex integration can help evaluating complicated complex and real

integrals of practical interesl.

42 COMPLEX FUNCTIONS
Iftor mach value of the complex variable z (= x + iy} ina given region A, we have one or more values
of w (= u + iv), then wis said lobe a complex function of z and we write w = ulx, y) + iv(x, y) = {z)

where u, v are real functions of x and y.
If o each value of z. there corresponds one and only one value of w, then w is said to be a single-

valued function of z otherwise a mulii-valued function. For example w = 1/2 s a single-valuad function
andw = Jz is a multi-valued function ol z. The former is defined at all poinis of the z-plane excepl
al z = 0 and the latter assumes wo values for mach value of z except at 2 = 0.
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4.2.1 Exponential Function of a Complex Variable

When x is real, wo are already famillar with he axponantial function

2
b X
= =t =tk = doam
g =14+ a3t o + =
Similarly, we define the exponential function of tha complex variable z = x + by, ag
1 - I? + + z' + =3

T = o o o o

&% or axp (2) TR o i

Putting x = 0 in (i), we get. z = iy and

E?=1+E4LE-{E+M {iﬂq

3 3' Lol S

? q ]
vy g8 ¥ _
[_'Ei"'ﬂ_"']“[f TR ]

= CO5Y+|8iny

Thusg B =8 .8"=e"(cosy +isiny)
Also K+ 10y = r(cos8+ |sin @) = rel®
Exponantial form of z {= x 4 i¥) = raf
4.2.2 Circular Function ofa ComplexVariable
Since, 8 = cosy+isny
and &% = cosy~-lsiny
- The circular functions of real angles can be writtan as
e¥ —p" g + g
Emy = 57 Cosy= . and so on,

Itis, therefore, natural ig define the circular functions of the complex variabia 2 oy the equations

: g —gu e +a™ i
S5NZ = - =, CDB Z = Jlanz = ol
P COs 7
With Cosec 2. s8¢ z and cof z as their respactive reciprocals,
Cor. 1. Euler's Thearem. By definitian
Bl! —g . EI..'! - E-u
COEZ +iginz = 5i | 5 = gl where z = x4+ iy

Also we have shown that e¥ = gos ¥ +i8iny, whare Y 15 regl.

Thuse* = cas 0+ ising where 8 15 real or complex. Thig is called the Euler's theorem.*
Cor. 2. De Molvre's theoram for complex numberg,

Whether 8 is rag| or complax, we have
(cos @+ jsingp - E

= &" = cos nB + i sin ng
Thus De Moivre's thaorem I8 true for all @ {real

Or Comples).
4.23 Hyperbolic Functions
1. Def. If x be regl ar complax,
52, |
T3 — Bdefinedas yperbolic sine of x and i written as sinh x.
L] e ¢
(t) 8 40

5 15 defined gs hyperbolic Cosine of x and iz written as cosh x.
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s
Thuss, sinh x = i:i,i‘- and cosh x = - ;E_“
Alsowe defing, tanh x = g:;;\i - ::::::  coth X = 1:3:11“ _ :jtg::
sechx = m;hx = *EE.,. . cosech x = mﬂ:}: = = _it-x

Cor.snh0=0coshO=1andtanh 0 =0,
2. Relations batween hyperbolic and creular functions
R _ g I
Sinca for all values of 8, sing = E—-;_ and cos @ = g 8
1

s Pulting 8 = ix, wa hawve

" a gt g & —a™" -
gin ix = % - _[ Eiﬂ' ] [ e¥ =gl = g
] _H 3 = | sink
b p
and cosix = = ;E = cogh x
Thus, Sinix = | ginh x . ()
CO5ix = coshx e [}
and .-, lanix = itanh x . (i)
Cor. sinh ix = | gin x (]
coshix = cosx - W)
tanhix = itanx - v}

4.24 Inverse Hyperbolic Functions
Ded. If sinh u = z, then u iz called the hyperbolic sine inversa of z and is written as u = sinh- z.
Similarly we define cosh' z, tanh! z, atc.
The inverse hyperbolic functions like other inverse functions are many-valued, but we shall consider
only their principal values

425 Logarithmic Function of a Complex Variable

1. Def. If z{=x + iy} and wi= u + iv) be so related that @ = 2, then w ia said to be a logarithm of z
o the base e and is written as w = log, . wa ()
,&,|3,|—_| E'I'irm - E"‘.BE”’=E i'-' EEnn.:"I
gz = w+2inx i)
-8, tha lagarithm of a complex number has an infinite number of valises andis. therefore, a multi-
valued funotion. The general value of the logarithm of 2 is written as Log z (baginning with capital
L) s0 &s to distinguish it from its principal value which is written as log z. This principal value is
Ubtained by taking n = 0 in Log 2.
E":J: from (i) and (ii). Log (x + iv) = 2inm + log(x + iy).

(&) Ity =0, then Log x = 2inx + log x.

This ghows that the logarithm of & real quantity is also multi-valued. its principal vaiue is real
whila all othar values are imaginary.
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(b} We know that the logarithm of a negative quantity has noreal value. Butwe can noy &valzang
this.
e log, (-2) = log, 2{-1)
= log, 2 + log, (-1)
= log, 2+ N l"'_-I:mst*wiﬂlI:E“]
= 0.6931 +1{3.1416)
2. Real and imaginary parls of Logix + y).
Logix +iy] = &inx + log {x + iy) F'l..u_:-:=n;;,u;..s-.ﬂl.__.=rm.nIEI
= 2inn + bog [r (cos 8 + 1 sin 8] snlhmr-m
= Zinm + log (re®) and @ = lan-" (i)

Zine + logr+ 1@

= log Jp +y%) +1[2nn + tar [y
3. Real and imaginary parts of (a + iy * "

Pulu,f[:nsﬂlﬂzrsiﬂﬂﬁﬂmﬂ
(a+i)y=" = g« nilegosp F ﬁu”+ﬁ"]andﬂ=tﬂn'1ﬂ.fu.

= gt = |2+ oy ia = #i
= pire i [2ra+ ogre®

e Ei:u.-rp:ln;rq-.l_zrr:a-m!
= ghe B
a@*cos B +i5in B)
where A =x logr-yi2ne + 8) and B = y logr + x{2nx + 8).

4.3 LIMITOFACOMPLEX FUNCTION
A function w = i{z) = said to tend to limit { as z approaches a point z,,, if for real €, we can finda
positive raal & such that
Iz)-1l cctor|2-2,| <&
. for every z # 2, In the 3-disc {dotted) of z-plane, f(z) has a value lying in the e-disc of w-plane
{see ligure below). In symbols, we wrle L1 f(z) =1,
T=aly

Thig definition of it thowgh similar 1o that in ordinary calculus, is quite different, for in real cakous
x approaches x, only along the line whereas hare z approaches z,, from any direction in fne 2-piane.

v Wk

e L

¥ i
Z-lane weplane

Continuity of f(z). A lunction w = Kz) is said lo be continuous at z = z,,, if

Lt flz) = f(z,)

T-aly

-
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Further f(z)is said o be continuous in any «
thal region.

so it w = (2} = ulx, y) + v(x, y) is continuoys at 7 =
atz=2yle atx=xandy=y Conversely if u(x,

will e confinuous &f z = .
44 DERIVATIVE OF f(z)

Letw = i(z) be a single-valued function of the variable z =
defined to be

egion A of the z-plane, if it is continuous at evary point of

Z,, than u(x, y) and v(x, ¥} are alzo continuous
yhand v(x, y) are continuous at (x,, ), then f(z)

% + 1y. Then the derivative of w = i{z) Is

i
— = Fz} = f(z + &z) - H{z)
(2} = L1 ———

-l

dz

¥ 4

<

i}

provided the limit exists and has the same value
Z@0

Suppose F(z)isfixedand Oz + 8z)isa neighbouning paint (Figure above), The pont G may approach

P along any straight or curved path in the given region, i.e. 8z may tend to zero in any mannear and

| dwidz may nat exist. It, therefore, becomes a fundamental problem (o determine the necessary and
sufficient conditions lor dw/dz to exist, The fact is settled by the following theoram.

Theorem. The necessary and sufficient conditions for the derivative of the hunction w = uix, v) +

ix, y) = Hz) to exist for all values of 2 in a region R, are

for all the different ways in which &z approaches

. g—:%gg—; are continuous funclions of x andy in R;
du _ v d W
oy ay ax

The relations in (ii) are known as Cauchy-Rismann® equations or briefly C-R equatione.

4.5 ANALYTICFUNCTIONS
A function f{z) which is single-valued and possesses a uniqua derivative with respect 1o z at all
points of a region R, is called an analytic or a reguler function of z in that region.

A paoint at which an analyiic iunction ceases to possess a derivative is called a singular point of tha
unetion.

Thus if u and v ara real single-valuad functions of x and y such that aw/ax, dway, av/ax, vidy are
Continuous throughout a recion R, then the Cauchy-Riemann equations

au i du )
4 e pm e 0 = e T
| R TR VR 0
18 both necessary and sufficient conditions for the function f{z) = u + iv 10 be analytic in B, The
derivative of f{z) is then, given by




338 | Engineering Mathematics for GATE and ESE Prelims MADE Easy
T
. EL .A_v]_ﬂ_u B i
e = L FeiT) = 5 i s, o
du v
or Fiz) = I,L-I.ﬂ[ﬁ iay
1w v & au

=

(il

The real and imaginary parts of an analylic function are called conjugate funclions. The reias,
between two conjugate functions is given by tha C-R equations (1) abave. "

ILLUSTRATIVE EXAMPLES
Exampia 1:
hw;: iz} = 2 analytic?
= X+ y
= zj":tu+|‘_~.-']l{:-r%y}=x?—y?+2i:y
= =f-“?-'.~'?+?ix‘.l'}(1+i!|f}
= (- 30) + (3 y -y
here u = x3 - 3xy®
v = By -y
W, = 3x¥-_32 v, = 3% - gy?
So =B v =6y
u = v),anduy:—-.-t

S0 C-A equations are satisfied and a|
Hence 2% is analylic for evary 2.

Example 2
Hw=hgz.frndn‘wfdz&m
Solution:
We have W
50 that u
ou
o

50 the partial derivatives are continuous at all paints

detarmine whare w is non-analytic,

U+ v = logix + iy)

1
EIDQ{:E+yz}+itan"‘-_.r.n'x

:
3090 + ), v = tan yp

varywhere exceptatz =
dw _ Ay v
& X i
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ble. Han ; REH
the sama &s those of real caleylys Thusg if Ce the rules of differentiation for complex funclions ara

can be differentiated just in the ummaﬂ; :ETmp*ran function is ance known to be analytic, it

ILLUSTRATIVE EXAMPLES FROM GATE

Q.1 For an analytic function, f{x + iy = o
fot v, CONEIGNING K 1o L o myrrgta_:l:txirgﬂ + i, ¥). uis given by u = 3k - 3y2, The expression

(a) 3y?-3x" + K

(c) By -Bx + K O Babyn
Solution: (d) (d) 6xy + K [CE, GATE-2011, 2 mark]
f = U+
_ b o= 3;.;?_3,‘,.;*
for f to ba analysis, we have Cauchy-Rismann conditions,
du
dx oy i)
CER
5 = = .-
From (i) we have t = e
Ern 2
Ty
= fav = [Bxay
2
2 E%H{:}
e, v = 3+ f{x) (i)
Mew applying equation (i) we get
v
dy o ax
=t —y = -[Ex+-?-f-]
iif
=» 5!+E = By
of
& T
i rafing,
By integrating .

Substitute in equation (iii)
o 3 + Gyx -3 + K
Byx + K

W
= W

Q2 22223 (anbe expressed as
=S+

(@) -05-0.50
(€} 0.5-0.5

(b} -05+ 0.5
(d] 0.5+ 050
[CE, GATE-2014 : 1 Mark, Sat-2]
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th.rlhn:l[h;_aj (2-3i) .[-E:_tl ) __15:|__21+15.-'r3 - ‘132;13[ = 0.5 + 0.5
o = R

3 ; = Iy is exprassed as H{z) = u (x, :
Q.3 An analytic function of a oMK variable Z =X + ly i5 8xp ¥+ vt 9
whena i= J-1 . ITu =Xy, the expression for v should be

.
B k
(al h{_;i}_ +k (b) ] . »
PR Ly (d) '[“';]' +k
. [ME, GATE-2009, 2 marks)
Solution: (c)

f(z) = u+ivisanalytic { given)
it must salisfy the Cauchy-Aaimann equations

|_,|J = 'ql'.r Vi ﬁ'
and W, = H, s i)
Heare sinca, u = xy(given)
=" '|_|“ = !Il En'lj U!II =X
Now substituting u, and u (i) and (ii) we gel __
Vv, = ¥ - (i)
and ¥, = =X 1)
Integrating (i) and (iv} we can now gel v as follows:
¥, =Y
av
= ﬁ =Y
= Jav = [y
2
._ 3 v=Laiw )
{ from (v} we have, v, = Fx) - ()
: Sinca from (iv) wa have, v, = =X
' Substituiting this is (vi) we get,
b Pix) = =x
i a4
.’ = dx
‘. = fdf = [-xax
—x2
= P T + kK

Mow substitute this i (v) we get,

. ° —— ﬂ;-q
ou&hucu vy CalliSCArTeET -
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g4 Themodulus of the complex number [::.:, ::] "
i b) J5
& 118 (@) 115

[ME, GATE-2010, 1 mark]
galution: (b)

3+4l _ B+400+2) _ =5+ 10i
-8 (0-2Zpozg 5 9

Izl = -Peer = 5

Q.5 Ananalytic function of a complex variable z = 1 + i y is expressed as f{z) = ulx, y) + i vix, ¥),
where § = f=1. T ulx, ¥) = 2 x y, then vix, y) must ba

¥

(&) »*+y®+ constant {b) « - y2 + constant
{c) =% +¥* + conatant {d) - %2 -y + constant
[ME, GATE-2014 : 2 Marks, Sat-2]
Solution : (€)
As par Cauchy-Riemann equation
n_ W
e | dy
Co
nd TR
du
PR
W o
and ¥y =
i
FYR
= v = y&+ f(z)
% = 0+flx)=-&
flx) = - + constant

LT ‘_,Iz—].’?*l-ﬂ'l:ﬂﬂml

Q.8 An analytic function of a complex variable z = x + iy is expressed as f(z) = ulx, y] + vix. y),
where ;= 2, If Uk, y) = £ - ¥, then expression for v(x, y} in terms of x, y and & general

constant ¢ would be

oy
(@) xy +c (b) 2 G

(x=y}
€) 2xy + ¢ (d) 2 ie

[ME, GATE-2014 : 2 Marks, Set-3]
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Solution : (¢)
As por Cauchy-Rismann egquations:
I:-.hJ - Etul md E = E
N dy dy o
u=a-y
e M
aw T Gy
L
alx
= v = Zay + lix)
o )
o - f
P 2y + )
= ?!—: = 2y + I'lx)
= fix) = 0 ielx=C
' v=2w+C

1+ : .
Q.7 The argument of the complex number ——, whare i= /1,18

(@) -n {b) -g
fe) % (dl =
[ME, GATE-2014 ; 1 Mark, Sat-1]
Solution : (c)
1+i

| Let z=
| ) 1eien o2
= U T T TE
,;f Z=x+l=li
i 80, xmQ
il y = 1
il A =1 i ey -1 l =1__ _ E
fi Arg(z) = tan [:] 1an [D] tan e = 5

Q.8 Giveniwo complex numbers Z; = 5+{5-.,.'§ l.Ianﬁ Zi= ;%3. +2i tha argument of i in deqres

i5
# 0 () 30
o (d) %0

[ME, GATE-2015 : 1 Mark, Set-1]
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Solution: (a)
2, = 5+(5/3); = ?E?Er
arglz,) = @, =tan"[%§] B, =60°
bl o

4l
a:g[ fz) = arg(z,) - arg(z,) = 60-60 = O°

2.9 Apointz has been platted in the complex

im

-

plane, as shown in figure balow.
Unt cicla

B

N

F/Fln

The plot for point i i
z

im Un# cacla

. TR
NPk

Ml Uit circle

AR
AL

Ui crcie

_/ =
Uit cireln

~
i

[EE, GATE-2011, 1 marks]

(o)

Y.

{d)

ARENAAE

solution: {d)
Leat Z=a+hi
Since £ is shown inside the unit circle in | quadrant, a & b are both +ve and <, 57 +b2—¢ .
1 i
MNow E = a+hi
E-hll i - 4 i
al+b? ~ af+b® af4b?
Sincea, b >0,
a =0
a® +b?

!t‘aﬁ’ﬁé‘u’ py carscainier

I ————— e .
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D
B
e <

o0 _;. is in IV guadrant.

4 Y FI ]
3 - J[—aesz] e Voo T
Since 0 < JaZ+bP<1
1
e e g

1
S0 - i% oulside the unit circle is IV quadrant,

Q.10 If x =./=1. then the value of x* is

(@) e=? (b) &=
ic) = {d) 1
[EC, EE, IN, GATE-2012, 1 mark]
Solution. (&)
% = i, then in polar coordinates,

T
e W
W o= cua—+|an5=&2

2
Mow, o = | = {Hnlrg} — gl *fE _ gniE
Q.11 Square roots of i, where =1, are
{a) i, =i (k) Em[—%]ﬂain[—%].ma[%}-ﬁsn{%]

o coo{§)ersn(F)eos(FJoion(3) o con{Z)on(-35) o )3

| [EE, GATE-2013, 1 Mark]

SR . m[_%]nsm[‘%] 5 éﬂs[%ﬁ]ﬂmn[%l
OO EE

-3 ) - o)
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Q.12 Lat 5 be the sel of points in the complex plane corresponding fo the unit circle. {That is.
' s= (2 :12]=1}. Consider the function f(z) = zz* where 2« denctes the compiex conjugate of
2. The ![I'I maps 5 1o which one of the following in the complex plane

(@) unit cirche

: (b) horizontal axis lioe segmient from onigin ta (1, 0)

I (c) thepoint(1, 0}

(d} the entire horizonal axis [EE, GATE-2014 : 1 Mark, Set-1]
gaiution : (€)
zz _ iz
iy L=%+h IEI,:.-J.-.-"..'I
Z°=x=-y
22" = (x4 iy) (x—iy) = x? + 42 /'\

which is equal to (1) always as given z
Bt k_/

22" = %2 4y itzy = 2]

’ TR

Q.13 All ihe values of the mufti-valued complex function 1, where ;= /=7, are

! {a) purely imaginary (o) real and non-negative
' (c) onthe unit circle (d) egual inreal and imaginary pars
[EE, GATE-2014 - 1 Mark, Set-2]
| Solution : {b)
l ddne 1
Lt z=1=9F nel

z = 1 which is purely real and non negative.

Q.14 Given f2) = g{#) + hlz), where [, g, hare complex valued functions of a complex vanable Z.
Which one of the following statements is TRUE?
(a) If 2) is differentiable at z, then .2y and hz) are also dﬂi‘EfEi'lli':ﬂbh at z,.
(b) f g{2) and h{2) are differentiable al &, then fz) is aleo differentiable at z,.
(c) If £2) is continuous at Z,, then il ia differentiable at 2,

dy If &2 ie differentiable at z,, then S0 are its real and maginary paris.
g al . [EE, GATE-2015 : 1 Mark, Sat-2]

Answer: (b)

Q.15 The eamplax function tanh(s) is analytic over a Fﬂgiuf't of the h’!'h'a-ginar',f axis ol the complex
s-plane if the following is TRUE averywheare in the regian for all integars n
{a) Re{s)=0 (o) Imis) 2 nx

i I:ﬁ"l-i-‘lh
m}mms%- (d) Imis) # =—

(N, GATE-2013 : 1 mark]
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Solution: (d)
tanhs = f!,. e
a'+a
itis analytic if e®* + @ %20
g* 2 B
gt 2 -1
¢ o e
1
im{a) » mﬁ; )
Q.18 The real part of an analytic function f{z) where z = x + Jy is gven by & ‘casla). The Iz irn,
part of fiz) is
@) e¥cosix) tb] a¥sinx)
{c) -e¥sin(x) {d) -& Ysin(x)
[EC, GATE-2014 : 2 Marka, Sat-2)
Answear; (d)

Q.17 Let 2= x + iy be a complax variable, Consider that contaur intagralion is perfonmeacd alng
the unit circle inanticlockwise direction. Which one of the following statements i NOT TRUE?

F
T . -
(a) hEremdueul??mz 1is 172
(b) §.7dz=0
1 1
{(‘.-} Eécgdz—'l

(d] ¥ (complex conjugate of z) is analytical function
[EC, GATE-2015 : 1 Mark, Sat-1]

Solution: (d)
ﬂE:I-I-I iy
Umx Ve =)
= u=1 =0
: uk=|'.'| :,=—1

| u = v ie. C- Anot salished

= 7 is not anahylic fJuncton,

Q.18 Let fz) = z:: If f2,) = Nz, for all 2, 22, a= 2. b =4 and ¢ = 5, then d sheuld

be equal to :
[EC, GATE-2015 : 1 Mark, Sat-2]
Solution: (10)

Az + b
ftz,) !
s

H.'Ei-irb
ﬂzz:l - CZs +d

i ._.—-l"'l""-‘..
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an+b _ az sb
€& +d  Gzz+d
acz 2+ boz, + adz, + bd = acz,z,+ bez, « adz, + bd
belz, - 2) = adz, - 2,)
£y # 2
= bo= a8d
b 4x5
g == "
a 2 L

(.19 In the neighborhood of z = 1, the functicn f{Z) has a power series expansion of the form
Hry=1+(1-Z+{(1=-27+ ...

Then flz)is
) = -1
s ® 375
Z2=1 1
(e} z4+2 {a}] o
[IN, 2016 : 1 Mark]
Solution: (&)

f2) = 14 (1= 2)+ (1= 2F + =~ -
iz L | P |
T i=-(1=2) 1-1+z =z

.20 Consider the complex valued function | .
#2) = 22 + bl 213 where zis a complex variable. The value of b for which the function flz) is

analytic is

[EC. 2016 : 1 Mark, Sat-2]
Solution:

Given that f2) is analytic.
which is possible only when b= 0

since || is differentiable at the origin but not analytic.

277 is analytic everywhare
1z = 22° + bl2*| is analytic

:-}n'ry when b=0
Q.21 f2) = wx, y) + iv{x, y) is &n analytic function of complex variable z = x + iywhers i = =1

Em[ﬂﬁﬁ.ﬂd as
uix, ¥ = 2 oV, than vix, y) may be (b . Fﬂ + constant

{a) -x + y# + constant
{c) %+ V¥ + constant {d) —{x? + j#) + constant
[ME, 2018 : 1 Mark, Set-1]
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Solution: (&) .
u = 2¥ v.= 2x
In option {a)

V=-2 U= =
V, =2y
{—A equaticn are gatistiad only in optl
variable 2 = x + iy, is given as Rx, ¥y = uix .‘.,,.-3 + V¥, y), where
12—y, Thevalug of k, for which the flunclion is analylic, is

[ME, 2016 : 1 Mark, Set-2]

an a)

Q.22 A function [/ of the comphax
ulx, i =2 keyand vix, )=

Solution: ;
Given that f2) = u+ Ivis analylic
ulx, ¥) = 2Ky e T

U, = ok vy--E_l.-'
U= v,

k=-1

up=2.ﬁ:: v, = 2¢
U, =V,
2kx = —2x

b= -1

01.23 Consider the function 2} = 2 + 7 where zis a complex varatle and 2+ denoies its compliax
conjugata. Which one of the toliowing is TRUE?

(&) f2)is bothcontinuous and anahytic (b} A2)is continuous but not analyic
(c) fz)is not continuous but is analytic (e} f2)is neither continuous nor anahytic
[EE, 2016 : 1 Mark, Set-2]
Solution: (b)
flef=z+ &
f(z} = 2xiscontinuous (polynomial)
U=2x ¥=0
.l..u'j =2 L.IJr =0
v.=0 w:ﬂ

C R. equiation not satisfiad.
. Mo whara analylic,

4.6 COMPLEXINTEGRATION

4.6.1 Lineintegralinthecomplexplane
Asin calculus we distinguish between definite integrals and indsfinite integrals or arigarivatives. AN
indefinite Integral is a function whose derivative equals a given analytic function in & regicn. 3/
known differentiation formulas we may find many types of indefinite integrals,
Complex definite Integrals are called (complex) line integrals, They are written as

o fz)oz
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e
Here the integrand (z] is integrated over a given curve C in the complex plane, called the path of
imegration. We may reprasent such a curve C by a parametric representation.

| (1) M) = x{1)+ (1) (astsh)

The sense of increasing 1is called the positive sensa on C. and we say that in this way, (1) orlents C.

we assume C 10 be a smooth curve, that is, G has a continuous and nonzero derivative ¢ = dz/dt
at each paint. Geomelrically this means that C has a unique and continuously turning tangent.

pefinition of the complex line integral

This & similar 1o the method in caleulus. Let C be a smooth curve in the complax plane given by (1),
and let [{I] e a conlinuous function gi'u"E'l'l :at |E‘HE|.:I at each point of C. We now subdiide '['ll'E-'
“pariition”) the inlerval a< t<bin (1) by poirts

 lpl=al bt L (=)
whera ty <1, - < L To this subdivision there corresponds a subdivision of C by points

LTS TRRRTR T LA |

where z, = z(t). On each portion of subdivision of C we choose an arbitrary point, say, a point
between Z; and 2, (that is, [, = 2(1)) whare  salisfies t, <1<1,). a point [, between z, and z,, elc
Than we form the sum

L

| o S = n§1f{§m}um where AZy = &y = Iy

| We do this for each n = 2, 3, - - - in a completely independent manner, but so thal the greatest
lan ) =t 1, 4| approaches zero as n — . This implies that the greatest | Az | also approaches
zero because il cannct exceed the length of the arc of C from z_, to z_ and the |atter goes to zerg
since the arc length of the smoath curve C is a continuous function of 1. The limit of the sequence of
complex numbers 5., 5, - - - thus obtained is called the line Integral (or simply the integral) of f{z)
over the ariented curve C. This

Cormplea lina iragral

curya C is called path of integration. The line integral is denoted by

|
! _
i (3 I,: fiz)dz,| orby |rf:cf{z}dz.

i C is a closed path (one whose terminal point £ coincides with its initial point Z,, as for a circle or

an 8-shaped curve). -
Genaral Assumption. All paths of integration for complex line integrals are assumed 1o be placewlse

smooth, that is, they consist of finitely many smooth curves joined end to end,

First method: indefinite integration and substitution of limits |
This mathod is simpler than the next one, butis lags general. It is restricted to analytic functions. its

fermula (9) (below) s the analog of the familiar farmula from calculus

Titx)ix = Flo)-Fia) (Fx) = f(x)].

I
p
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Theorem 1: (Indatinite integration of analytic functions)

Let 1{z) be analytic in a simply connected domain D. A doman D Is calied simply connected i ey,
simple closed curve (closed curve without sell-intersections in D encloses only points of D). Thar,
there exists an indefinite integral of {(z) in tha domain D, that is, an analytic function Fiz) such g,
F*(2) = i{z) in D, and lor all paths in D joining two points 2, and z, in D we have

i

@) jﬂz}dz:F[L!l-Fftu:l

Iy

(Fiz) = iz

(Mote that we can write z, and z, instead of C. since we get the same vaiue for all those C from
z,i0z,.)

This theorem will be proved in the next section

Simple connectedness is quite essentlal in Theorem 1, as we shall see in Example 5. Since
analytic functions are our main concern, and since dittersniiation formulas will often help in finding
F(z) for a givan f(z) = F(z), the present method is of greal practical interest.

If 1{2) is entire, we can take for D the complax plane (which is certainly simply connected).

ILLUSTRATIVE EXAMPLES
Tel Isi
' . Bt e = 2.2
f Example 1: iz dz 31’[' = 3[1+|] 33
m
Example 2: Jcoszdz = sinzfl, = 2 sinxi = 2i sinh x = 23.067,
B-3mi St
Example 3: J gtidz = Ea”"Em = gtz _ ghen)
Bem

Sinca e® is penodc with pariod 2.

i x 4
Example 4: JE = Lni-Ln{-)= %‘—[%]-in.

Hare Dis the complax plana without D and the nagative real axis (where Ln Z is not analytic), ooviously
a simply connected domain.

second method: use of a representation of the path
This rathod is not restricted 1o analytic functions but applies to any continuous complax function.
Theoram 2: {Integration by the use of the path)
Lat C be a piecewise smooth path, represented by z = z(l), where s <t <b. Let fiz) be a confinwous
function on C. Then

]
(5) J. flz)dz = [fz{t)] Aty [z 5%‘}

Proof: The left side of (5) is given in terms of raal line integrals as jct_u dx-v dy}+i]’c[udy+v dx).
We now show that the right side of (5) also squals the same,

We have z = x + iy, hence # = +iy. We simply write u for u[x(t), y(t)] and v for v[=(1), y(1)]. We als0
have dx = & dt and dy = ¥ dt.

|
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;- /]
lﬂﬂ,l}é{u}dt j'[” VI +iy)dt = _[c[u el — v dy + {u dy + v dx]]

Jotudx—v dy) +if {udy+ v ).
steps In applying Theorem 2
(A} reprasent the path Cinthe form z() (a<t < k).

(8) Calculate the derivative 2 (t) = dz/dt.
(C) substitute 2(1) for every z in fiz) (hence x(t) for x and yit) for y).
(D) Integrate flz{t)] 2 (1) overtfroma to b,

ILLUSTRATIVE EXAMPLES

Example 1: A basic result: Integral of 1/z around the unit circle
wa show that by integrating 1/z counterclockwise around the unit circle (the circle of radius 1 and
centar 0), we obtain

L] tﬁ:% = 2ni (€ the unit circle, courterclockwise).
This ie & very important result that we shall nead quite often.
Solution: We may represent the unit circle C n the form

Zit) = cost+lisint =& {0=t=2n),
o thal the counterclockwsse integration comesponds to an increase of t from 0 to 2x. By differentiation,

#1) = e (chain rule) and with [(z(1)) = 1/z(t) = &* we get from (10) the result
2x in
§ £ = Jefie'dt = ifdt =2ni
Cz b 3

Check this result by using z{t) = cos L+ i sin L.

Simple connectedness is essential in Theoram 1. Equation (4) in Theorem 1 gives O for any
chosed path bacause then z, = Z,, 50 that F(z,) - F{z,) = 0. Now 1/z is not analytic at z = 0. Bul any
simply connacted domain containing the unit circle must contain z = 0, s0 that Theorem 1 does nol

apphy—it is not enough that 1/z is analytic in an annulus, say % <[z < % because an annulus is not

aimiply connactad!

Example 2: Integral of integer pOWers
Lat f{z) = (z - z,)™ where mis an integer and z, & constant. Integrate counterciockwise around the

circle C of radius p with center at 2, [Fig. below)
Solution: We may represent C in the form

zll) = 2z, + plcos t +isint) = 2, + pe’ D=i<2x),

Then we have

(z-z™ = pme™, dz = ipe* dt

y cailouvaliicel
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Paih in Example 2

and abigin

s b g
§lz-20)"dz = [ oM™ ipelct = p™ e at,
u i

By the Euler ormuia, the right sice equals
2K =
ip™| | cosim+ Trdt+ | [ singm + 1)t dt .
b ]

thus obtain 2ni. For inleger m = 1 each of he

im=-1, wehavep™'=1cos0= 1.8in0=0. We
tarval of length 2r, equal 1o a penod of sine

two integrals is Zero because we integrale aver an in
cosing. Hence tha resull is

2xi (m=-1,
N Ssc[z'zﬂ]mdz:u (m = -1andinteger),

Dependenca on path. Now Comes a vary important fact. If we integrate a given function i{z) froma
paint z, toa point 2, along different paths, the integrals will in general have different values. Inother
worde, 8 complex line integral depands not only on the endpoints of the path but in general
also on the path itsalf. See the nexi example.

Example 3: Integral of a nonanalytic function. Dependence on path

Integraie {z) =Rez=xfrom0to 1+ 2i

(a) along C* in Fig. below,

(b} along C consisting of C, and C.

Solution:

{a) C* can be represented by 2(t) = 1 + Z2it{D 515 1). Hence 2t = 1 + Zand f[fit)] = =(t) =ton C°.
We now calculate

|
’;J:Hezdz = {t{na}m - %mzj; " %H
(b) We now have
Cyzlt) = 1. ) = 1, fal) = x) =t << 1)
Cozft) = 14t Hy = |, Hz(t) = x(t) =t (0<ts2)

We calculate by pariitioning the path C into twa paths C, and C,, as shown below
1 2
gﬂezdz = IﬁHezdz-s-Jcﬂﬂezdz = J'n[m+£1.im = %+Ei.

Mote that this result diffars from the result in (a).
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a——
¥
3
= R =143
E""' +C
|'-r’ G1
~ = X
Paihs in Example 3

a7 CAUCHY'STHEOREM

Iffiz)is an analytic function and f{z) is confinuous at each point within and on a closed curve C, then
jcl[zh:lz =0
writing f{z) = ulx. ) + iv(x, y) and noting that dz = dx + idy

Ici{a}ijz = [ (udx = vay)+i[ (velx + udy) o i)

; : ; gl du dv v :
Since F'(z) is continuous, tharefore, — X2 9Y @V
X' Iy 3y are elso continuous in the region D enclosed by

C.Hence the Green's theorem can be applied to (1), giving

v du o | du aw ..
J'Dltz}dz = - HE[H - E]:I: d:,r+|ﬂo[ﬁ - E dx cly v ()
MNow 1(2) being analytic, u and v necessarily satisfy the Cauchy-Rismann equations and thus the
integrands of the two double integrals in (i) vanish identically.
Hence, HC fizdz = 0.

Obs. 1 The Cauchy-Riemann eguations are precisely the conditions for the tworeal integrals in {1} to
be independeant of the path. Hence the line integral of a function f{z) which is analylic in the region D,
is indepandant of the path joining any two points of D.

Obs. 2 Extension of Cauchy's theoram. If f(z) is analytic n the region D batweean two simple closed

curves C and C,, then II: flz)dz = L;i f{z)dz.

To prove this, we need to infroduce the cross-cut AB. Then [#z)dz = 0where the path is as indicated

by arrows in Figure below i e. along AB—along C, in clockwise sense & along BA—along C in anti-
Clockwisa sense

e [ fz)dz+ J-:. l(z)dz + [, Hz)dz +ch{z]-dz = 0.
But, since the integral along AB and along BA cancel, it follows that
fsf{z}u:tx + .[1:1 fizyz = 0.
Reversing the diraction of the integral around C, and transposing, we get
-[C fizydz = i:1 fiz)dz

each integration being taken in the anti-clockwisa sanss.
I C,, C,. Cy..... bie any number of closed curves within C (Figure below), then
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48 CAUCHY'S INTEGRAL FORMULA —
If f(z) Is analytic within and on a closad curve '

f{z]dz
el

and if a is any point wil

fla) = 2%

Consider the lunction {(z)(z- —a)whichis analytic al
r, draw a small circle C , lying entirely within C.

au points within C excapt at z = a. With tha point

a as centre and radius .
Now lizliz - 8} being analytic in the region enclosed by C and C,, we have by Caucny's ihearem,
For any point on Gy,
_r.ﬂdz £= —{55'}—{11 i - |
Cz=-a Ciz-a z—-a=ra" anddz=ire"de
- IE. — e o = |_Fc1f[a +re'® )de. ()

I tha limiting form, as the -::ircla‘t:, ehirinks lo the point a, i.e. asr—» 0, tha integral (i) will appreach o

2n
[ fexo = i) [ op =2eia) Thus [ 22z = 2si(a)
A ¢ iz =
-3 fla) = amlez- EHI .. ()

which is the desired Cauchy’s integral formula.
Car, Differantiating both sides of (2] wrt. a,

~ f{z) 1 f(z)
fa) = Emjﬂ EP-E[ ] -E-T;jﬂ e dz. . (0l
Similar - 2yt i
any, F[EJ = EI‘I‘I Ef,;l_' H_'J:I —dz vor LIV)
and in general, a) = L mido] T{z;m! —gz {v)
z-4

Thus it follows from the results {2) to (5) that If a function I{z) is known to be analytic an the simpe
lcra?::ﬂt[_‘ium C then the values of the function and all its derivatives can be found at any point of C.
neidently, we have established a remarkable fact that an anal ivali

ytic function 58556 ivatves
of all orders and thase are thamsaives all analytic. o s
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I
) LLUSTRATIVE EXAMPLES FROM GATE
Q.24 Using Cauchy's integral thearem, the value of the integral (integration being taken in
counterclockwise direction) .:ﬁ .z_ ;E.dt is
2n
T (6) & _ani
{c) B Emi :
g1 (d) 1 [CE, GATE-2008, 2 marks]
Solution: (a)

Cauchy’s integral theoram is

~ f{z}
fi =
) Em ?z -8 az

La Z) .
?ﬁ-dz = 2rila)
m“ IE‘B 1 2'3 - E
‘#‘“—-EEI_I 0z m Eff_._l
-}

Applying Cauchy's integral thearem, using fiz) = #* - B,

A ) s ) ol - 3-oe- 5

a7

a1

Q.26 The value of the integral !{E;T&"J}{E: LJEJ'IdI {where C is a closed curve given by Izl = 1) is

a8 = 5'

(=) 3 0 T

{e) .El (c) [CE, GATE-2009, 2 marks]
Soltuon: [r_'.}

_ [ _cosidzz)
Here, = m e

Since, z = 1/2 is a paint within |z| = 1 (the closed curve C) we can use Cauchy’s intagral
theorem and say that
p B 3 |
-k f( —]
I=3l2

o - G5

[Notice that I(2) is analytic on all pts inside |z] = 1]
1
1 DDE{ 2n X 2] E
5

=
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Q.28 Il 2 is o comphox variabio, e valuo of f ; lu

(8) - 0.511- 1,67 b} - 0511 + 157

(c) D.611-1.57 (d) 0.511+ 1,67

[ME. 2014 : 2 Marky, Set.)
Answaer: (b)
dz :
Q.27 The value of §+— 57 whera C is the contour L2-f2f = 1 s
t(1+7%)

(a) 2nd (b) =

{c) tan'z ) mitan'z  [EE, GATE'EWT-?MM|
Solution: (b)

1 1
1 (z-Nz+)
Poles atiand -i, L.e (0, 1) and (0, -1)
From figure of |z=i2] = 1 balow wa see that pole (O, 1)
i.8. i iz insida C, while pola (0, 1) i.e. -l is outside .

Y 3 i

50, |=EI1IHBE[[I}=Em.m=n

.28 Given I(z) = % - % I C is a counterclockwisa path in the z-plane such that lz + 11 = 1,
1 .

the value of E—ﬂ‘f,:"[z}'dz is

(a) -2 o) -1

(c) 1 id) 2 [EC, EE, IN, GATE-2012, 1 mark|
Solution: {c)

Giver, Hijw 2 Z#3)-27+8 = -Z+]

z+1 z+3 @+ Wz+3  (z+0(z+9)
Poles are at -1 and -3 i.e. (-1, 0) and (-3, 0).

From figure below of |2+ 1] =1,

wae saathat (-1, 0) is inside the circle and (-3, 0) is outside

the circle.

Residus theorem says,

5.
2mj

fplizjdz = Residue of those poles which are inside C.
G

So the required integral %qtgffz]m I3 given by the residue of function at pale (-1,0)  {which

is inside the circle).

—{-1+1 2 1

Thi idua is = ===
& residua is 1+3) 2

Qvalnicu vy valiliouvalnici
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028 -55%3& evaluated anticlockwise around the circls |z - | = 2, where |= y—, is
la) —im (b) O
(c) 2+m (d} 2+ 2
[EE, GATE-2013, 2 Marks]
golution: (8)

|
2" —4 . 2% _4 almmw
244 (2 A)(Z-2
Poles al 2i and -2i i.e. (0, 2i) and (0, -2i)

From figure of |2 -1| = 2, we see that pola, is incide C, |
While pole, -2i is outside C,

Z' -4 =
'j} dz = 2mixRes. F(z)

2244 y-a
. o 2@ -m| o [@F-4]
Z+2(Z-2) |, . (21+ 27

0.30 Integration of the complex function iz)= fii . in the counterclockwise diEaction, around

lz-1N=118
(8} —mi (o) O
(c) mi (d) 2mi
[EE, GATE-2014: 2 Marks, Sat-3)
Solution : {c)
(2) = [Z==]12
2% =1
Given circle
| #<1] =1
= [{x+iy}=1] =1
|:.:l:— '”5 4 l_|rE =1
x=11% =0r=1
Poles of f{z)

Z2-1=0 /—\
[z=+1,1]
So, ~1 - Outside circle 0.0) w:z. 0 X
+1— Inside circla

2 1 A e s | -
J[“___-z_';{zq.ﬂ = 2:1[;:—1 ) -EM[EI T

+1

i
Fmpﬂal{z:—-1l=jm‘ﬂ

as it lies outsice from counter.

IV My S LI LA e
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Q.31 The value of cf:l?dz. whara the contouwr is the unit circle iraversed clockwise, g
P .
(a) ~2ni (b) O
(e) 2ni (d} Ami [IN, GATE-2015 1 Mﬁl’ﬁ]

Solution: (b)
Given, :jmzzi dz where Cis the unil circla. By Cauchy'’s residus thaoiem

1
‘ﬁ? g2 = 2ni [sum of residugs)

r,_i Is NOT analytical al z=0

50, z= 015 the pole of order 2.
So, residua gl 2=0= —["rI 2", 1]
I'm

So, cj‘-z_zdz - Ert.'[l:l'] -
0.32 If C denotes the counterclockwise unit circle, the value of the contour integral
Eimilj]ﬁa{z}ﬂz T [EC, GATE-2015 : 2 Marks, Set.4
L4
Solution: (1/2)
[ 8 X2 4 yf = 1

ZeX+ly ; d2=dx+ idy
w=Cosll [ y=sind ; 0=08=2xn
de = -5inBdd | dy = cosBdb

| : 1 & : .
e qﬂ'}x{dx +idy) = 5= {cutsﬂ{—smﬂda] +icos B cosedi

-I -?l 2-1
L g—sinﬂcmﬁdﬂﬂjcns?adﬂ]
o

o a5
Y
| O 2 2

: 'msaﬂ]:“ [u sinﬁ‘a]’"
s *i| —+
2m i 2 b 4 4
e [ ) 1
" Zn [: 2]”1“]] 2

Q.33 If Cis a circle of radius rwith centre 2., in the complex z-plane and if nis a non-zero iNtEgET
oz

then f ———— equals
" G
(@) 2ary () 0
(c) % (d) 2rn [EC, GATE-2015: 1 Mark, Set-3)

g
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golution: {b)
By Cauchy integral formuia

@Ji‘—dz = Eﬂ_f.l:_zﬂl
n

&=z "7
az 2xi
Z—z et = opr0=0
© rtl

Q.34 The vaue of the integral

Binx
LT TTT
E"u"ﬂﬂ.lﬂt&ﬂ using contour integration and the residua theorem is
—R® 3R _
&) — ©) L:E{li
sin(1)
— 1
) e @ =0
[ME, 2016 : 2 Marks, Set-1]
Solution: (a)
ain.r
ﬂl 9
‘[ LA SR .

T sinz T LPolfe®
i —r _ A e
E lz’+Ez+E _[,z"+2;:+z

Polesare Z+ 22+ 2 =10

-2 J4-B 212 _
b 1 Ll = —11;
2 2
I
4
Outside upper hall
L

Residue is 0

-1+

i
inside upparhalf

R Lt z=(-1+i e”
zzﬂ_ﬁ}f e E-—I—l+iz b (z-(-1+i)z -{-1-9))

= i ) a1 gi-1
(=1+-{-1-0 —A+i+1+i

=il

I = LP of 2::[“3 ] - 1Pof a(e &)

- 1P of me~\(cos1® - isint®) = X801

m\bﬁ (IR AVAV ] Lff_uul TTOGCOKTITIoT
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.35 Th value ol tha jragral
;_ _E..’ +5 i
_ - |iz® -4z +5)
[J 2J

taken in the anl-clockwise direction, would be

aver the contowr L =1,

48
24 mi o) i
LETE 13
12
< d =
) 13 13
" [EE, 20116 : 1 Mark, Set-1]
Solution: (b)
|
Singlarilies, L= 7 2z
1
— ligs inside C
oy, 2= 5 i
By regidue thaoram, @
i
; fo=2nim-=3
_ 2
Residue at = Ayp = _lim (E—l]- 1 22 +9 - =
2 24112 2 [E’—E]{32+4E+5]

4.9 SERIES OF COMPLEX TERMS
1. Taylor's series”. if f{z) is analytic inside a circle C with centre at &, then for z inside C,

i ;
fiz) = f{a) + Flaz - a) + @{34}2 L e +%[z -a"+...... v (b

2 Laurent's series®. If f{z) is analylic in the ring-shaped region R bounded by two concentric
circles C and C, of radii rand r, (r > r,) and with centre at a, then for all zin R

f(z) = gy + &z - a) + ay(z - E,'IE +o4+8_Nz-a)" +a,(z-ar" +a(z-af® ..
f(t)
& gl
I"being any curve in A, encircling C, (as in Figure below).

dg 0 m*ﬂﬂ

Obs. 1. As f{z) is analytic inside, G, than a_ = 2x 9T (1—a)™
However, if f(z) is analytic inside G, then a__ = 0: a, = %tﬁr“—fgl}n—fdt = fﬁ{[ﬂ

and Laurant's saries reduces 1o Taylor's series,

Obe. 2. To obitain Taylors or Laurent's series, simply expand i{z) by binomial thearem, instead of
finding a_ by complex integration which |s quite complicated.

QObs. 3. Laurent serias of a given analytic function fiz) in its annulus of convergence is unigue. There
may be different Laurent saries of f{z) in two anruli with the same centre.
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410 ZEROSAND SINGULARITES OR POLES OF AN ANALYTIC FUNCTION

4.10.1 Zeros of an Analytic Function

Daf. A zero ﬂf ﬂn analytic funclion f{z) is that value of z for which iz} = 0

If f{z) is analylic in the neighbourhood of a point 2 = a, then by Taylor's theorem
fiz) =8, +8,(Z-a) +afz-af + ..+a (z-a)"+_..wherea, = fr&,ﬂ
fay=a,=8,=_.=8,,= 0 but a_ = 0, then f{z) s said to have a zero of order m al 2 = &,
when m = 1, the 2ero is said to be simple. In the neighbourhood of zero (z = a) of ordar m,

(z) = a, (z-8"+a ,(z-af™" +. ..o
= (z-a)"a(z)

where, ) = a8 +a_ . (z-a)+ ..
Than §{z} 5 analytic and non-Zera in the nelghbourhood of z = a.

4.10.2 Singularities of an Analytic Function
Wa have already dafined a singular point of & function as the peint al which the lunction ceases lo be
analytic.

1. Isolated singularity. It z = & is a singularity of §z) such that #{z) is analytic al each point in its
neighourhood (i.e. there exists a circle with centra & which has no other singularity), then
z = a g called an isolated singularity.
In such a case, fiz) can be expanded in a laurent's series around 2 = &, giving
f{z) = 8, + &2 - 1)+ afz-aF + .48, (z-a)" +8,(z - B2 # e

1 L "

e, 8, = 211 E:a}rn.'l

0

For axample. i{z) = cot (xfz) is not analytic whare tan (rfz) = 0 ie. al the points mfz = N of

z=iin{n=123...)
Thus z = 1, 1/2, 1.3.... are all isclated singularities as there is no olher singularity in their

nelghourhood

But when n is large, Z = 0is such a singulanty that there are infinite number of other singularities
in its neighbourhood. Thus z = 0 s the non-isolated singularity of {z).

2. Remavable singularity, !f all the negative powers of (- &) in (i} ae Zero, then Hz)= Eﬂan;;_ a)".

Hera the singularity can be removed by defining #{z) at z = a in such a way that it becomes
analytic at z = a. Such a singularity is called a removable singularity.

Thusif 1L f(z) exists finitely, then z = a is & removable singularity.
3. Poles. If all the negative powers of (z - a) in {i) after the nth are missing, then the singularity at

z = aig called a pole of order n
4, Essential singularity. If the number of negative powers of {z = a) in (i) is infinite, then z = a is

called an essential singularity. In this case, zl:la 2} doas not exist.
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ILLUSTRATIVE EXAMPLES
Examplae 1;
Poles and Essential singularities
The funclion
2) = 1 3

+
zz-2 (z-27

has & simpla pola at z = 0 and a pole of fitth arder at z = 2. Examples of functions having anisslagy
essanlial singularity at z = 0 are

Mote: The classification of singularities into poles and essential singularities is not merely a farmal
matter, because the bahaviour of an analytic function in a neighborhood of an essential singularity is
entirely from that in the neighborhood of a pole

Example 2:
Find the natura of singuiarities of following funclions
1 3 . "
= i (b) e (c) sin =
i ; o
Example 3:
Find the nature and location of singuiarities of the tollowing functions:
I-5ingz 1 i
" B ©) Sosz-snz
Solution:
(&) Here z =0is a singularity,
z-sinz _ 1 _[ B ]}
Also -—?— 22{2 Fi 3!+ﬁ_ﬁ+'"
_x_z Zz
Ta s

Since there are no negative powers of z in the expansion, z = 0 is a removabla singulanty

1
(k) {Z+1]|Eunﬁ = [I+E+1‘,|sln1t_marat=:—2
1 1 |
= 1+ 3) [1 3It"+5!15' }

f 1 3 1 a
L T i a_1.,.8 _
[ Ty "']+[t 2t T BIE ]

4 .,.,---u-#:’l'-‘--'Iﬁ
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-  J—
I “ef 2a° 1z
3 1 1 i
E r 3
z-2 @Bz-2° 2z-23)
Since there are infinite number of terms in the negative powers of (2 - 2). 2 = 2= an
essantial singularity,

[}
+

|

1

= 1+

are given by eguating the denominatar to zero, i.e. by

g ol 2] = -
) Pola {2) e

cosz-sinz=00rtanz =1 or z = n/4. Clearly 2 = w4 is a simple pole of f(z).

Example: 4
What type of singularity have the following funclions:
iy
] 1ied
c) 2@
L ) = (c)
Solution:

(a) Poles af f{z) = 1/(1 - &) arelnund by equating o zero 1 -ef = Doref = 1= "™

= 2rmi{n=0 4122 ..)
Glaarl:.r iz} has a simple pma alz =2m

E,-E'-.' E.E‘Il-l fa E
(b) a7 e @ wheret=z-1

el =2t vt @ eyt (2 }
= F-{1*F+ 21 + 3| ¥ ar + T L

E?l+£+£+i+2+4' }
@ i 3 3 15

1 & 2 |
fz—ﬁ‘[z?{zﬂfEEHEﬁ{zﬂ]

Since there are finite (4) number of terms containing negative powers of (z - 1),

=

z = 1is a pale of 4th order.
fc f(z) = ze%
—z[1+ ! + 1 . }
2 212 algs
g3
= z+z“+—5-+?+

Sinca there are infinite number of terms in the negative powers of 2, therefore 2 = Dis an
essential singularity of f(z}.

ILLUSTRATIVE EXAMPLES FROM GATE

z2-1 ;
; i iz has singularities at
.36 The analytic function i{z) = = 3 g

fa) 1and-1 (B) 1andi
(c) 1and-| {d) iand-i
[CE, GATE-2009, 1 mark]
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Solutlon: {d)
z=1 z2=1 z=1

@) = 2= F=-F 7 z-z+])
The singularilies arcatz = i and -

~3z+4 ; .
€1.37 The valua of the integral gf?m dz where c is the circle 2| = 1 is given by

c

(a) O (b} 1/10
() 45 {d) 1
[EC GATE-2011, 1 mark]
Solution: (a)

=AZ+4

- ?{? +42 +5)

dz =2ni{sum of residues)

4 :
Poles of ..-EI+ are given by
(z° +4z+5)
#+42+5 =0
-qu'lE—ED=—4tEi
2 2

-

= =2 xi
Since the poles lie outside the circle| 2] =1.
So f{z) is analylic inside the circle |z| = 1.

Herea $flz)dz = 2ni(0)=0
[
01.38 The Taylor series expansion of 3sing + 2008 X 15 |
o3
(a) 2+3::—12—§+--- {b) E—El:f.+xz—?+---
3
(e} 2+31+}E2+£;-+--- (d) E—EK—I‘.E+1E+---
[EC, GATE-2014 : 2 Marks, Sat-1]
Solution : (a)
The Taylor's series expansion for
ST .
Elft = I-ﬂﬁr-h-ﬁ—!--ﬁ--lr e
151 { E.I'IIII
'L! POTDE 5 L
EII A o T!_H"' —ma K < e
. K o ot ad
dsimd + 2C0BX = 2+3"“H"“§T*T+?"'
3
= 2+3x-x2-% 4
2

b
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.
.39 The series ¥ ol Converges tg
A=Q""

(& 2h2
c) 2 b} 2z
id) &
Solution : (d) [EC, GATE-2014 : 1 Mark, Set-4]

Given
Let —

HM) = 4N

") ,.,;un!

= W W AW - S S
ﬂl+1.'+§+:ﬁ+1|'+”' =1+‘I+E+E+ﬁ+...

Alzo we know that axpression of g*

B 1'1"3':'?-1-]:?1-—1-:3-[-—1.-;:'14....
Put _ 2 6 24
¥ = 1inabove expreasion
1 -1 1
g = T+ = — o nnn
2 6 24
=
am Z;

411 RESIDUES

The coafficient nf {z = a) " inthe expansion of i{z) around an isolated singularity is called the rasidue
of f(z) at that point. Thus is the Laurent's series expansion of #(z) around z = a L.e. f{z) = a+ 4,
(z-al +afz-a) +..+a, (z-a]" +a (z-ay®+.. theresidus ol fz)atz=aisa.,.

- 1 fiz)
EI'IEE., -E." = E Im dz

3
a, = Resf(a)= ELi{z}dz
_[cf[z]-dz

4.11.1 Residue Theorem
If #{z) is analytic in a closed curve C except at a finlte number of singular points within C, then

[fi2)dz = 2ni x (sum of the residues at the singular painis within C)

Let us surround each of the singular points a,, a,,...., &, by a small circle such that it encloses no
other singular point. Then these circles C,, C...... G, logether with C, form a multiply connected
region inwhich f(z) is analytc

2mi Res f(a) e (D)

oldlilieu vy cvdllodaliiel
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. Applying Cauchy's thearem, we have

[lizdz o [ fakdz ], Hedz+.. | feidz oy
2ni [Res f(a,) + Res fla,)+.....+Resf{a }]

which ig the desired resull,

4.11.2 Calculation of Residues '
1. I f(2)has a simple pole al z = a, then

Aes f(a) = rI:IEHEI:J!—E}TIIEIIJ i)

Laurent’s serias in this case is |
fiz) = o+ cfz-a)+ ez~ a)? ...+ (z-a)"’
Multiplying throughout by z - a, we have
(z-a)z2) = cyiz-a) + c,{z-af + ..4C,
Taking limits as z — a, wa get

Lt [(z-alz)]

2. Another formula for Res fla): |
Let iz} = elz)iye(z). where iz} = (z-a) F(z), Fla)= 0. |

! Ltz = ! ~ (z -a)ela) +iz -a)’(a)+....]
Then L {2z -2zl wiz)] - u it

c_, = Res f(a).

I

T tla) +(z-ala)+..... HRGa D l

= zoaya)+{z-ajela)+ ...
b(a)
Thus, Res f(a) = ——
@ = Y
3, |fi{z) has a pole of order n at z = a, then
1 gt 3
= —{——[lz -a]"fz
Res f(a) En-1}’[112“"“ | H]L_a
Obs. In many cases, the residue of a pole (2 = a) can be found | by putting z = & +tin f(z) and
expanding it in powers of t where | 11 15 guite small,

ILLUSTRATIVE EXAMPLES FROM GATE

Q.40 Consicer likely applicabliity of Cauchy's Integral Theorem 1o evaluate the foliowing integral
counter clockwise around the unil cirgle c.

| = tf.-sﬂ; zdz,
[

z baing a compéex varabile, The valuee of | will be
fa) |=0:singularities sat = ¢

(b} 1=0" singularitiss set = t%mnﬂltz ......... ]
(e) | =mn/2:singularties set = {+nen=01 < SO
(d) Mone ol above

[CE, GATE-2005, 2 marks]
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Solution: (a)
IEEcz dz - 1 4
——ily
The poles are al 5 {“"‘31
Mone of these poles lia insidg 1he u:; VR = . 32, w2, 2, 4 B2
Hence. sum of residues at pojes o 5 circle | z] = 4

Singularities se - $and

I = 2l [sum of ras
asidues of |(z
nix0=0 (2}l the polee]

the following Complex function

Q.41 Consider

f(z)= 3

{—-TH-_,_E
Whi the following Z-10Z +2)
{a) -1 .

8

by =

(©) 2 LT
(@ 3

[CE, GATE-2015 - 2 :
Sclution: (a) Marks, Set-I]

flz)haspoles at z=1,-2
Residue of 2) at (2 = 1)

= fm(z- i
fmiz-1f{z) = tim

=1

. 1z +2)
Residue of Rz)at{z= ~2)
- d
= :IE.E o= [[z + 2}2 f{z‘j] = :'ﬂ%[ﬁ‘.]
= Iir'n -9 3 "
Eeim |:.E' =F 'l]

Q.42 The intagral @ﬂz}dz evaluated around the unit circle on the complex plane for fiz) = Cos z s
Z

{a) 2 (b} 4m
{c) —2ni {d) 0
[ME, GATE-2008, 2 marks]
Solution: (a)
i) = 052
£

has simple pole at z = 0 and z = 0 is inside unit circle on complex plansg
; Residue of fiz)atz = 0

¥ om =}
z[:-lﬂ f(z) -z Hnmrsz

Icf{z}dz = 2ni (Residue atz =0)=2ni1 = 2xi
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1 . ”
Q.43 The valus of tha contour integral ¢ — —;d2 in positive sense is
lz-d=3
(a) i@ {b) -nid
(c) -in2 (d) m2 [EC, GATE-2008, 2 ma g
Solution: (d)
e 1
7 +4 (z+ 2z - 3)
Pole (0, 2) lies inside the circle |z =il =2
while pole (0. -2) is cutside tha circle |2 i| = 2 as can be seen from figure below;

|.z)dz = 2ri[Fesicue at those poles which are inside C]
|

e
(B+2) 2
Q.44 [f tha sami-circular contour D of radius 2 1s as shown in the figure, then tha value of the integral
1 .
e (13, |8
HER

2ni Res f{2i) = 2ni

@ j=

(c) -n

b} -in
(dy n [EC, GATE-2007, 2 marks]
Solution: (&)

1 1 :
Il = l#'ﬂ ds = §W s = EII| 4 I:E-I.H'I"IEHEEE’JE!E]

pole 5 = -1 is not inside the contour D, but & = 1 s inside D
residue al poles = 1is

, (&-1)
2 - NEeT

1 1 _
5 = ‘?mﬂﬂ :EﬁjH%:iﬂ

. -
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The residug of the function iz} = —__ _
(.45 fz+?}?|:z-2f alz=21is
1 1
@ "3 (b) =
! 1
€ 36 @ 3 (EC, GATE-2008, 2 marks]
golution: (8)

R L[E[{I ~2Y f(z)] s finite and non-zero, f(z) has a pole of order two at 2 = 2.
T4

The residue al 2 = & is given or a pole of order n as

¥
Resf(a) = — [% [(z- a]“ﬂz]])‘

r— 1
Hare n = 2 (pole of order 2) anda = 2

Imi
Fesi(2) = {1 [(z-27? fm]}

d : 1
P Rl I S ALY
"iz[z tz+2fﬁz-21?]}“g

dz |:£.|. EJ?
i
Q.46 I f{z) = ¢y + C,Z ' then @ +—::-E—Jd2 is given by
i

(a) 2mc, (b} 2={1+c,)

(e) 2mc, (d) 2mj(1+c,) [EC, GATE-2008, 1 mark]
Solution: {d)

i(z) = co+¢, I
éi-r;tzj dr = 7
It has cne pole at origin, which is inside unit circle
S0 LBy, o o [Residue of f(z) at = O]
- z
! = 2mj[1+ HO)]
Since. fiz) = Cu+ C,z"'=210)=0C4
. Answer = 2rj(1+C,)

1= 22 .
Q.47 The residues of a complex function X(z) = ﬂz——E} at ils poles are

11
1 1 — _— —
(a) -E-.—E.tde {b) 2.Ealrl-l:l 1
1 3
fc) 21 1 and —g (@ 5 -1end 3
[EC, GATE-2010, 2 marks)]

i
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Solution: (c)
1-22
Mz = 2 Hz-2)
polesarez=0z=1andz=2
Residusatz =0

1=22
valug of ———— atz=10

I E-0z-2)
1-2x0 1
= O-10-2)
Residue a1z = 1
residue = value cf _EZ} {z2= 1=1":_£-%1=T
Residus at z =2
) 1-22
residug = value of A1) atz=2
1-2%x2 3
= 2{2_“ -_E
. 1 3
-, The residues al ils poles are 5 1 and 5

2+ 1|:||z where z1s a complax number and Cis a unit crgle

.48 Tha valua of the integral —I

with center at 1 + 0 in the cumphx plane is
[IN, 2016 : 2 Marks|

Solution:
1 ¢ 2% +1 1 2 +1
T —az' e n—-—uz
Enr:j:{zz -1 E:}!{z-i}t:ﬂ]
Polesareat z= 1, -1
Given circleis |z-1 =1
pole z = 1 i85 insida C

pole z = -1 lies outside C
Resf(z)atz=11is
2+ 2
s Hz-ffroo-oou===
1-&1‘ -n[.l'—'ﬂtz'l":} 2
Rasatz=-1is=0
By Cauchy's residue theorem
1 2" +1

dz-:—-:-:E::j:1+ﬂ} =1
Em B 2nj

.49 In the following integral, the contour C encloses the points 2ajand -2x/

SNZ__ iz The valus of the integral is
“2x 2z - 2xf

[EC. 2016 : 2 Marks, Set-1]
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.-r'"_'-_-._._
golution:
1 sinz 1 2rj1"(2r))
o e T AN Attt U1 w1
Eﬂ{{z-!ujf 5 E'HH- 2!
fl#) = sinz
Flz) = cosz
F(2) = -sinz

l= ik u 2] adold Ll . = —JsinhEn = -133.87
en 2 2

£ 3
Q.50 The values of the integral Eimci}e—?d: a|mg a closad contour ¢ in anti-clockwise deracion
c — T

for
(i} tha point z, = 2 inside the contour ¢, and
(i) the poinl 2, = 2 oulside the contowr ¢, respectively, are

{6} RAES (d) ()0, (i) 7.30
[EC, 2016 : 2 Marks, Set-3]
Solution: (b}
{i} Z, = 2-lies inside C,
- g
50 Res f2) = ..!I-TE{E_EJ'E_:_J
=g?=7.30
1 a’ 1
o T = —T. =7.39
Eﬂ!:z—z'dz oxi Em'{ 39)
(if) Z, = -2 ligs out side Cthen
Res f2) =0
g’ 1
——dZ = 2ni—{0)=0{ }
'W -
;[ -2 2ni

Q.51 For f{2) = %5—] the residus of the pole at 2 = 0 is
[EC, 2016 : 1 Mark, Sal-3]

Solution;

i 1 i .

; sinz — coefficientof = in 31 5!
of = coe

Residus 2 z e

g A n‘__gd_i___

=1
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9z-5 insad path T'is is equal to (4, Where 2=x + jyang
Q.52 Thavaluanfﬂ"rmﬂ'f along a closed pat

i= J=3.The corfect path T'is

¥
r r
| i &
(&) ' (b) ? k‘ 2
¥
r
: ¥ ok, .
[ME, 2016 : 2 Marks, Sat-2]
Solution: (b)
32-5 _
Lz—m:—zzm =4l
4z =5
j{z-mz—z]m =2ni2)

.
Sum of residuas must be aqual to 2,

Raesf(z) 5 3z -5 =._2=2
=1 =zi1{: “{z—mz-E; —1

| Rzt e o (poyot=8 _B=3._
| z=12 r-l-E[ 2}{2—‘[?[2-2} -

Therafore 2 = 1 must lies ingide C
z= 2 hes outside O
then only we will gat the givern iMagra! vahsas is equal to L,
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Probability and Statistics

51 PROBABILITY FUNDAMENTALS

5.1.1 Definitions
Sample Space and Event: Consider an experiment whose outcome is not prediclable with certainty.
Such an experiment is called a random experiment. However, although the outcome of the experiment
will not be known in advance, let us suppose that the set of all possible outcomes is known. This sat
of all possible outcomes of an experiment is known as the sample space of axpeariment and is

denoted by 5. Some examplas follow,
1. If the outcome of an experiment cansist in the determination of the sex of a newbarn child, then

S = |g, b} where tha outcome g means that the child is a gifl and b is the bay.
2. |fthe outcome of an experiment consist of what comes up on a single dice, thenS =1, 2, 3, 4.

5. 6}
3 [ the cuteome of an expariment is the order of finish in a race among the 7 horses naving post

positiong 1. 2, 3, 4,5, 6, 7; than S = {all 7! permutations of the(1,2.3.4,5,6. 7
The cutcome (2, 3. 1,6, 5, 4, 7) means, for instances, that the number 2 horse comes in first, then the
number 3 horse, then the number 1 horse, and 50 on,
Any subset E of the sample space is known as Event That is, an event is a sat consisting of
some or all of the possible cutcomes of the axpariment. For axample, in the throw of a single dice
S=1{1,2 3 4 5 6] and some possible events are

E, = {1,2.3
i3, 4]
E, = [1.4, 6} etc.

if the outcome of the experiment is contained in E, than we say that E has occurred. Always E ¢ 5.
Since E & S are sets, theorems of set theory may be aflectively used to represent & solve probability
problems which are more complicated.
Example: If by throwing a dice, the outcoms ig 3, then events E, and E_ are said 10 hare occured,
In the child example — (i) It E, = {g}. then E, is the evant that the child is & girl.
Similarty, if E, = {b]. then E is the event that the child is a boy. These are examples of Simple events.
Compound events may consist of more than one putcome, Such as E =[1, 3, 5] for an experiment
of throwing a dice, We say event E has happened If the dice comes up 1or 3or5.

M
]
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af a sample space 5, we defing the new avent E u F 1 o,
£ or in both E and F. That is, the event E U F n:“

dice axample (i) If eventE = |1, 2 ang p B "
" W),

For any two events E and F
all putcomes that are either n E or in
either E or F ar both occurs. For instancas, inthe

thenEUF=1,2 3 4}
That is E s F would ba anofher evant consisting of 1 or 2or 3 0r 4 The event E U F is called ypg,,
events E and F we may also defing the ney 4 ol

event E and the event F. Similady, for any two
E r F, called intersection of E and E to consists of all putcomes thal are common 1o both E ang e

_=
E F

{a) Shaded egion  EwF b} Shaded region _EnF

el

{r) Shaded ragion | E

den

{d) EcF

5.1.2 TypesofEvents

5.1.2.1 Complementary Event
The event EC is called complernentary event for the event E. It congists of all outcomes natin E, bl

in 5. For example, in a dice throw, if E = [Even nosj = {2, 4, 6] then EC = [Odd nos) = {1, 3.8

5.1.2.2 Equally Likely Events
Two events E and F are equally ikety i

plE} = piF)
For axamgpie, E = 1,23
F=|4.58]
are equally likely, since plE) = pi{F)=1/2.

5.1.2.3 Mutually Exclusive Events
Twa avants E and F ae mutually exclusive, if E 1 F = ¢ i.e. p{(E 1 F) = 0. In other words, i E poOUrE,
F cannot occur and it F occurs, then E cannot occur (i.e. both cannot occur together).

5.1.2.4 Collectively Exhaustive Events
Two events E and F are collactivaly exhaustive, if E wF = S & together E and Finclude all possil®

autcomes, p(E u F) = p{S) = 1.

|
il

e TR
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s34 Independent Rrents
> Twi gvenls E and F are indepandany i
F;[{EET FY = plE) s piF)
AlsD F} = piE}and p(F | E) = p{F)
whenever l; ag;:t ;ﬂ::ar;dapanuan@. L.&. when two events E and F are independent, the conditional
pwb"'gd ; S wﬂ 85 marginal probability. | e. probability E is not affected by whather F has
happenn ' Ceversal.e.. when E is independent of F, then F is also independent of E.

513 DeMorgan's Law
L (Se) - oe

2 (o8] = e

Example: (E,WE)E = EEAES
'[E1 ™ Eg‘F = E1E' i) EE'E-
Note that E,© m E,° s the event neither E, nor E,,.
E, w E, is the event aither E, or E, (or both).
Demergan's law is often used 1o find the probability of neither E, nar E,.

8. plE,C N ES) = pl{E, w E;)¥] = 1~ p(E, E,).

5.1.4 Approachesto Probability
Thare are ? approaches 1o quaniifying probability of an Event E.
1. Classical Approach:
n{E} _E
E}) = =
B = %9 8
| &, 1he ratio of number of ways an avent can happen to the number of ways sample space can
happen, &1he protability of the event. Classical approach assumes that all outcomes are equally

likely.

ILLUSTRATIVE EXAMPLES

Exampla:
If aut all possibie jumbles of
that this word will start with a "B

the word “BIRD", & random word s plcked, what is the probability,

Solution:
_ nE)
PE) = 18)
In this problem n(S) = all possibie umbles of BIRD = 41
n(E) = those junbles starting with “B" = 3/
3 1
E}' ﬂE} = .ﬁ E- ] Ei' = I
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ILLUSTRATIVE EXAMPLES FROM GATE

Q.1 Supposa we uniformly and randomly select a permutalion from the 20! parmitations of 1, 3 5
- an \What is the probabiiity that 2 appears at an earliar position that any other ayen,

number inthe selecled permutation?
! &
@ 3 ® o
(d) Moneof these

o
© 2o
[CS, GATE-2007, 2 Mirks]

Solution: (d)

Number of parmutations with '2" in the first position = 18
Mumber of parmutations with "2 in the sacond positien = 10 x 18!
(fill the first space with any of the 10 ocid numbers and the 18 spaces after the 2 with 18 cf the
remaining numbers in 18! ways)
Number of permutations with *2" in 3 position = 10 x gx 17
(fill the first 2 places with 2 of the 10 odd numbers and then the remaining 17 places with
remaining 17 numbers)
and 5o on until 2" is in 11 place. After that it is not possible to safishy the given conditicn,
since thers are only 10 odd numbers avallable to fill before the ‘2", S0 the desired number of
parmutations which satisfies the given conditian is
191 + 0% 181+ 10x9x 1T +10x I x Bx 161 + ... + 10! x 8¢
Now the probability of this happening is given by

101+ 10 =181+ 10x9x 171... + 101 x 8!

201

Which is clearly not choicas (a), (b) or {c). o Answer is (d}-none of these,

Q.2 Adeckof 5 cards (each carrying a distinct number from 1 to 5) Is shuffled thoroughbly. Twa cards
are then removed one at a time from the deck. What is the probability that the two cards are
spdectad with the number an the first card baing one higher than the number on the second card?

(=) 115 () 425
ic) 1.4 (d) 25 [CS, GATE-2011, 2 marks]
Solution: (a)

The five cards are {1, 2, 3, 4, 5]

Sample space = 5 = 4 orderad pairs.

[Since there is a I* card and 1™ card we have (o take ordered pairs]
pil® card = "™ card + 1)

=P{(2,1),(3.2). 14.3). (5. 4] = —2_ %

Gxd

2. Frequency Approach: Since sometimes all outcomes may nat be aqually likely, a maore genears!
approaches iathe frequency approach, where probability is defined as the relative frequency of

gecurmence of E.
e THE]
AE) = Lm—

where M is the number of times exp is parffarmed and n(E) is the no of times the event E octurs:

!bcanned by Camscanner e
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ILLUSTRATIVE EXAMPLES
Example:
Fram the following takle fing the probability of oblaining “A"
Grade |A|B|C|D
Mo of Students | 10 | 20 | a0 | 40

grade in this exam.

Solution:
M

total no of "
By frequency egproash studants = 100

PiAgrade) = DAgrads) 10
M e

51.5 Axioms of Probability
Considar an experiment whose sam
assume that a number P{E) is defin
Axiom-1: 0= P(E) < 1
Axiom-2: P{S) =1

Axiom-3: For any sequence of MLl , i
Y exclusive
g whori i events E,, E,, ... (that is, events for which

Pie space is 8, For each event E of the sampla space S wa
ad and satisfies the tollowing three axioms.

(58] - grE)
Example: P(E, VE,)=P(E,)+ P (E;) where (E,. E, are mutually exclusive).
5.1.6 Rulesof Probability

There are six rules of probability using which probability of any compound evant involving arblirary
events A and B, can be computed.

Rula 1:

_ _ plAVE) = plA) + p(B)-plA n B)
This rule is also called the inclusion-exclusion principle of probability.
This formula reduces to

plAwB) = plA)+ p(B)
if A and B are mutually exclusive, since p{A H B) = 0in such a case,

Rule 2:
plAnB) = p(A) - p(B/A) = p(B) - p{A/B)
whera p{A/B) reprasents the conditional probabillity of A given B and p(B/A) represents the condiional
probability of B given A,
(8) p(A) and p(B) are called the marginal probabilities of A and B respectively. This rule iz alss
called as the multipkcation rule of probability.
(B) (A ~ B) is calied the joint probability of A and B.
{c) If A and B are independent events, this formula reduces io
B(AB) = plA) - p(B).
gince when A and B are independent

i p(AB) = plA)
| and p(BlA) = p(B)

l.e. the conditional probabilities become same as the marginal {unconditional) probabilities.
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id) IfAandB are
ig) Condition for thrae 8y

independent, then so are A and
ants to independent:
Events A, Band C are indepandent iff

BC: AC and B and A and Be

p(ABC) = p(A) p(B) p(C)

and
and
and

Egr instance, A is Independent of B w C.

ILLUSTRATIVE EXAMPLES FROM GATE

with one containing 4 red and 3 green bails and Ihe oiner containing 3
andom fram each container. The probability that ong

0.3 There are lwo containars,

biue and 4 green bals. One ball is drawn atr
of the balls is red and the other is biue will be

p(AB} = plA)p(B)
p(AC) = p(AIP(C)
p(BC) = p(B)p(C)
Note: Il &, B. C are indepandent, than A will be inde

A, B, C are pairwise indepang

pandent of any evenl tormad from B ang ¢

[CE, GATE-2011, 1 mark]

(a) 117 o) 949
(o) 12/48 {d) 37
Solution: (c) _
plone ball is Red & ancther Is blug) = pifirst is Red and second is Blue)
4 3 12
R R T

Q.4 |fPandQ ere two random events, then the following is TRUE

{a) Independence of P and C implies that probability (P Q) =0

(b) Probability (P Q) = Probability (P) + Probability (Q)
{c) It P and Q are mutually exclusive, then they must be independent

(d) Probability (P ~ Q) < Probability (P)

Solutlon: {d)

{a) is false since of P and Q are independent
pr(PnQ) = pr(F)* pr(Q)

which nead not be 2era,

(b) Isfalsasince prPuwQ) = prP)+ pr(Q)-pr(P ~ Q)

-3 pr{PwuQ) £ pr(P)+ pr(Q})
{c) isfalse since independence and mutually exclusion are unrelatad propertias.

[EE, GATE-2005, 1 mark]

(d) iz frue
since PnQ g P
= P Q) s n(P)
- priF Q) = priF}
Q5 Aloaded dice has following probability distribution of occurrences
DiceValus [ 1 [ 2 |3 |4 | 5| 6
Probability [1/4 [1/8 |1/ | 1/8 [1/8 | 1/4

If three identical dice as the above are thrown, the probability of occurence of values 1,5

and & on the three dice is

(a) same as that of occurrenceof 3.4, 5

(c) 1/128

Scanned by CamScanner

{b) same asthat of oecurrencacf 1,2, 5

(d) /8

[EE, GATE-2007, 2 marks]
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ution: (€)
sol picevalue | 1123|458

oot |55 3 3

g |3
probability Fi
since the dice are independant,

_—

o | —
| —
o) —
B =

H1-5. E':I = %xl“l Py _1_

B 4 128
g6 A fair dice s rolled twice. The prebability that an odd number will follow an even numbar s
L 1
@ 3 ® 5
! i
1) B (d} =
3 4
[EC, GATE-2005, 1 mark]
golution: (d)
a1
=g
<
F.o= i
Sinca both events are independent of each olhes,
Yo X .1
Ploaten = 2 %32 = 3

f.7 Anexaminafion consists af two papers, Papar 1 and Paper 2. The probabifity of failing in P'HF'E'
1is 0.3 and that in Paper 2 is 0.2, Given that a student has failad in Paper 2, the progability of
failing in Paper 115 0.6. The probabikty of a student failing in both the papers s

0.5 ib) 0.18
:2::: 0.2 idy 006 [EC, GATE-2007, 2 marks]
Solution: (c)

(A denote the event of failing in paper 1}
(B denote the event of failing in paper 2}

Given, P{A) =03
| P(R) =02
= P (AB) =08

Probability of faiiing in both
' P(A~ B) = PB)+ptA | B)
| = D.E‘ﬂ.ﬁ= D.TE

QB A fair coin is tossed 10 times. Whal is the probability that OMLY the first two tosses will yield

\ heads? "
2 o (1

@ (3) o EE[E‘]“.
© [%]m @ °c(3)

[EC, GATE-2008, 1 mark]
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Salution: (€)
nlonly first two tosses are heads) = pH H LT T..T)

Now, aach toss & indepandent.

; i
So required probability _ qu}Hp[H:I!IP'm]E'---

- (G-

Q.8 A fair dice is lossed two times. The probabilty that the second toss resulls in  valus that is

higher than the first 1085 is

236 {b) 26
E:i M2 {d} 12 [EC, GATE-2011, 1 mark]
Solutlon: ()
Total cases = 38 [(1. 1}[1_2”1.3}ands~unn]
Favourablecase = (X >XJ)= 15
15 _ 5
F".['!":1 > I?] = E_ 12

Q.10 Suppose A and B are two independent events with probabiliies AA) 2 0 and A(8) = 0. Lat
A and B be their complements. Which one of the following statements is FALSE?
(a) AANB)=AA)AH) (o) AAB)=FAA)
fe] FALB)= AA)+ AE) (d) P(An B)=PIAWE)
[EC, GATE-2015 : 1 Mark, Set-1]

Soilution: (c)
AAuB) = AA + A8 -HANB)
Since P{A ~ B) = p(A) p(B) (not necessarily equal 10 Zero).
So, AW B) = AA) + AE) la falsa.

Q.11 A fair coin is tossed till a head appears for tha first time. The probability that the number of
required togses is odd, is
{a] 13 (b} 12
(e) 23 (ch) 34
[EC, EE, IN, GATE-2012, 2 marks]
Solution: (c)

1 1
P{H) = 7 PT) = =
Favourable situation: Hor TTHoe TTTT H and =006

1 T
= —|14+=
E[ +4+-F+..]
11 1 2 s
= 3|17-774 73 (sum ef infinite geometric series with a = 1 andr = 14)

h
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0.12 guppose a 1air six-sided die i roligg once, i
second lime. What is the probability thgy

the valuse on the die is 1, 2 or 3 the die is rolled a

() 121 the sum of otal values that tum up is al least 67
e} 23 (b} 512
() 16
golution: (B) [CS. GATE-2012, 2 marks]

It first throw 15 1, 2 or 3 then sample g
| (1,5).(1. B}, (2 4}. (2, 5),
aSumz 8B,

If first throw |s 4, 5 or 6 then second throw 5 not
if the throw was 6. Which is one out of 3 peesibl
So the ree diagram becomes as foligws:

5 Pace is only 18 possible ordered pairs. Oul of this only
(2,8).(3.3),(3, 4), (3, 5) ancl (3, 6) i e. . out of 18 ordered pairs gives

made and thareiore the only way Sum = 6 is
.

.83 &4

i Bumz6
e 4 56 2 Sum = &
From above diagram
1.8 1 1 15 5
= —K—tm M= —
P{sum z B) 5%38 2“3"35'E

Q.13 Suppose X for i= 1, 2, 3are independent and identically distributed random variables whose
probability mass functions are PriX, = 0] = P{X, = 1] = 1/2 for i = 1, 2, 3. Define another
random vasiable ¥ = XX, & X, where & denotes XOR. Then A{Y =0 X, =0]= ___.

[C8, 2015 : 2 Marks, Sat-3]

Solution: (0.75)
Ky Ko Xy | KXy | YeX, K@%,
L 0 a ¥ = Dand
o 1 0 & o Hy=0
1 8 & L] o i 3 cans
T 1 o 1 1
X, = 0 ind cases
AY=00%=0)_3_
P(Y = 0/ X3 = 0) = ——pr—p S =075

Q.14 An urn containg 5 red and 7 green balls. A ball is drawn at random and its colour is noted. Tha
ball is placed back into the urn along with another ball of the same colour. The probahility of
getting & red ball in the next draw is

B &7
@ J56 ©) 186

78 Ba
© 3g5 (@ 3

[IN, 2018 : 2 Marks]
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Solution: (a)
g b
PR R =
I —mmer "
12
5. 8 F B
F[Hﬂd] = ﬁxﬁ EH13
I
~ 158
Rula 3: Complementary Probability
pia) = 1-p(A)

p{AT ) is called the complementary probabiity of A and plA™ ) represents the probability tha (s

event A will not happen.

plA} = 1-p{A%)

plAC ) is also written as plA)

Motice that plA) + plA") = 1

i.e. A and A’ are mutually exclusion as well as collactivaly exhaustive.

Also notice that by Demorgan's law since AC ~ B% = (A U BI®
plAC~BE) = plaA B =1-plauB)

ie. pineither A nor B) = 1 - p{either & or B)

ILLUSTRATIVE EXAMPLES FROM GATE

Q.15 A single die is thrown twice, What is the probability that the sum s neither 8 nor 97

{a) 119 (b) 536
le) 14 (dy 34
[ME, GATE-2005, 2 marks]
Solution: (d)

Sample space = (6) =36
Total ways in which sum is either B or 9 is
(2, 6), {3, 5), (3, €}, (4, 4), (4, §), (5, 3), (5. 4), (B, 2). (6. 3) = Gways

- Probability of coming sumBaor 9 = 2.

i
36 4

So probability of not coming sum 8or8 = 1-

B =
£ o

.16 Three vendors were asked o supply a very high precision component. The respeciive
probabilities of their meeling the strict design specifications are 0.8, 0.7 and 0.5. Each vend®
supplies one component, The probability thal cut of 1otal three components supplied by 1he
wandors, at least one will mest the design specification is .

[ME, GATE-2015 : 1 Mark, Sat-2)

i
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solution: (0.97)
Probability of atleast one meet the specilication

S —

5 = 1*{315‘#5] = 1=-{02x03x05) =087

@.17 The probability of getling a *head" in a single toss of a biased coin is 0.3, The coin s tossed
repeatedly 1l 3 "nead” is obtained. If the 1osses are independent, then the probability of
geiting “head” for the first ime in the fifth toss =

[EC, 2016 : 1 Mark, Set-3]

Solution:

PlHY= 03
AT) =07
gince all losses are independeni
50, probabyility of getting head for the first time in 5™ 1oss is

= ATIPITIPITIATI P =07 07«07 x07 x0.3
= 0.072

Aule 4: Conditional Probability Rule
Startinng from the multiplication ruke
plANE) = p(B) - plAB)
by cross multiplying we get the conditional probability formula
piAB) = BELD)

PE)
By interchanging A and B in this formula we get

pA ~B)
A) & —F
PENES pA)

ILLUSTRATIVE EXAMPLES FROM GATE

0.18 A hydraulic structure has four gales which operate independently. The probability of failure of
each gate is 0.2. Given that gate 1 has failed, the probability that both gates 2 and 3 will fail is

{a) 0.240 (b) 0.200
(e} 0.040 (o) 0.008 [CE, GATE-2004, 2 marks]
Solution; (c)

Since all three gales are independeant
plgate 2 and gate 3 fail | gate 1 failed)
= plgate 2 and gate 3 fail)
p{gate 2) x pgate 3} [gate 2 and 3 fail independently]
0.2 x0.2=004

Q.19 A person on a trip has a choice belween private car and public transport. The probability of
using a private car is 0.45, While using the public transport, further choices available are bus
and metro, out of which the probability of commuting by & bus is 0.55. In such a situation, the
probability (rounded up to two decimals) of using a car, bus and matro, respectively would be
(a) 0.45,0.30 and 0.25 (b) 0.45,0.25and 0.30
fc) 0.45,0.55 and 0.00 {d) 0.45,0.35and (.20

[CE, GATE-2008, 2 marks]

|
[
:
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ﬂﬁ;nﬁmn given inthe problem can be represented by the tree diagram given below:
Car
045

o Bus
Pvi. Trarspor
Metro

how comoleting the blanks in the above diagram we have (e final diagram as shown below:

n.4s_~ =V
< 058 Bus
055 ™. Byt Transport <

[ 45 =~ Mgt

From above chagram
5 pliCar) = 045

p{Bus) = 055x055= Q.20
and p{Metro) = 055x 040 = 0,25

.20 A box containg 2 washers, 3 nuts and 4 bolts. llems are drawn from the box at random one a
a time without replacement, The probability of drawing 2 washers first followead by 3 nuts and

subsequently the 4 balls is

{a) 2315 (b) 14630

{c) 11260 (d} 1/7520 [ME, GATE-2010, 2 marks]
Solution: (c)

Box contains 2 washers, 3 nuts and 4 bolis
ol 2 washers, then 3 nuts, then 4 bolis)

2 1 3 2 1 4 EJ_ g 1]. 1
-[Enﬁ]n[ﬁxgxg]x[ixaxzx1 1260

.21 The chance of a student passing an exam is 20%. The chance of a student passing the
exam and gatting above 0% marks in iLis 5%, Given that a studeni passes the examination,
the probability that the student gels above 30% marks s

1 1
(a) 8 (b) -
2 5
(G} 9 (d) =
[ME, GATE-2015 : 2 Marks, Sat-2]
Solution: (b)

Given,  p{passing the exam) = 0.2
p{passing the exam n > 90%) = 0.05
The desired probability
= of> 90% | passing tha axam )
_ Plpassing the exam n>90%) 005 _ 1
plpassing the exam) 0.2 4
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1 1
=2 H-= 1
gz AXl = 3. AY) = 2. and AX A ¥) = — | the value of P(¥X) is

12
|
@ 3 ® 5
|
€l 3 (d) % [ME, GATE-2015 : 1 Mark, Sat-3]
golution: (<)

F[E] . RYAX) 112 1

™ FEG = e 5o

X LX) a4 3

Q.23 A far com is toseed three times in succession, If the first toss produces a head, then the
probability of getting exactly twe heads n thiee losses |s

(@ /8 (by 12
Icr:} {-‘3;? (d) 34 [EE, GATE-2005, 2 marks]
Solutlon:

Sample space = [HHH, HTH, HHT, HTT)
Favourable {2 heads in 3 10sses] = [HTH, HHT}

Renuired probability = -E . %
Q.24 Two falr dice are rolled and the sum r of the numbers tumed up i considered
(a) Prir=>&)=(1/6) (B) Pr(r/3 is an integer) = (S/6)
ic) Prir=81r4disaninteger) = (59) (d} Pr{r=61r5is anintagar)=(1/1 8)
[EE, GATE-2006, 2 marks]
Solution: (&}
If two fair dices are rolles the probability distrisution of rwhere r is the sum of he numers on
gach dia is given by
¥ 12|3|4|5]ﬁ|?|a|9|1ﬂ|11|12[
1 213

P‘f“ﬁ 3% |3

iiii|ii£‘i
9% (35136 |36 136 |36 |36 |36

The above table has bean obtained by taking ail differant ways of obtaining & particuiar sum,

For example, a sum af § can be obtained by (1,4). (2, 3). (3. 2)and (4, 1}.
plx=5) = 436
Now let us consider choice (8)

Prir=6) = prirz27)

e i e e — i ———

choice (a)pr(r>6) = 1/G18wrong.

Consider choice (B)
Pr(r/3 is an integer) = prir=3+prir=6+prir=9+prir= 12)

2 5 4 1 12 1

+ thaica (b) prr/3 is aninteger= 5/6 is wrong
Consider choice (¢)
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1
pr(r=8 | r/d isan integer) = ™

o, pri{rfdis aninteger) = prir=4}+prir=8) +pr{r= 12
« AT o (O (TS T
B e - -
36 36 36 36 4
prir =8 andr/4 isaninteger) = prir=8) = %
5/38 20 5

pr(r =8 | ri4 is aninteger) = T SE"3
<. Choice (c) is corract,
Q.25 A box contains 4 white balls and 3 red balls. In succession, twa balls are randomly selaciag

and removed from the box. Giva that the first removed ball is white, the probability that g
second removed ball is red is

{a) 1/3 (b} 37
{c) 12 (d) 477
[EE, GATE-2010, 2 markg
Solution: (c) :
. , : plisred andlis white)  pllis white and |lis rad)
I | - =
pillisred | 1is wehile) oS white) pliis white]
4 - 3
iy . ;
4 8 2
T

1.26 Let P (E) dencie the probability of the event E. Given P (A) = 1, P(B) = 1/2. the values of
P(A/B) and P(B/A) respectively are

(a) 1/4,1/2 b) 12, 14
e} 1421 (c)y 1, 172 [CS, GATE-2003, 1 mark]
Solution: (d)

Given, PlA) = 1

PBE) = 12
Both events are indepandant
Sa, FamB8) = 12

AnB
P(AIB) = Hﬁ,.{g-}——} = :L; =1
HANB) 2

PBIA) = W=T=1E

Q.27 Aishwarya studies either computer science or mathematics everyday. if she studies computar
science on a day, lhen the probability that she studies mathematics the next day is 0.6. I she
studies mathematics on a day, then the probability that she studies computer science the nex!
day is 0.4. Given that Aishwarya studies computer science on Monday, what is the probabiity
that she studies compuier science on Wednasday?

(a) 0.24 (b} 0.36

(c) 0.4 (d) 0.8
[CS, GATE-2008, 2 marks]

“Scanned py Camscanner



T Lk LR T R s

MADE EASY Probability and Statistics | 387
—
solution; (G}
Let C denote computes science study and M denotes maths siudy, The tree diagram for the
problem can be represented as shown below:

: Monday Tuesday Wadnesday
+
| l i c
ohe©

| M

Loy
I " Y]
: M i M
| Mow by rule of total probability we total up the desired branches and get the answer a8 shown
below:
p{C on monday and C on wednasday)
= p(C on monday, C on tuesday and C on wadnesday) + p(C onmanday, M on tuesday and C

on wednesday)
=1x06=x04+1x04x04=024+016=040

Q.28 An unbalanced dice (with & faces, numberad from 1 to 6] is thrown. The probability tha the
face value is odd is B0% of the probability that the face value is even. The probability of
getling any even numbered faca ia the same.

If the probability that the face is even given thal it is greater than 3 is 0.75, which one of the
following options is closest to the probability that the face value exceeds 37

{a) 0453 (b) 0O.468
{c) 0.485 (d) D492
[CS, GATE-2009, 2 marks]
Solution: (b)
It iz grwan that

p{odd) = 0.9pleven)
Now since, Ip(x) = 1
plodd) + p(even) = 1
—  09p(even) +pleven) = 1

==

1
pleven) = ﬁ=r 0.5263

Mow, it is given that p {any evan face) is same
e p(2) = p{d)=p(6)
Now since, pleven) = p(2) or p(4) or p(E) = p(2) + p(4) + pl6)

1 1
p(2) = p(4) = p(E) = 3 pleven) = 3 {0.5263) =0.1754

It is given that
pleven | face > 3) = 075

plevenNface>3) _ o

: = piface > 3)
' plface=48] _ 575
= plface > 3)
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o ——
pllace - 46) _ p(4)+p(B)
> pllace =3) = =—g75 ~ 075
_ 0784401784 _ ) perr ) 468
0.75

Q.29 |l iwalalr coins are Hipped and al least one af the outcomes is known to be a head, what g the

probability that bath oulcomeas are haads?

|} 13 (o) 1/4
i) 12 (d) 213
[CS, GATE-2009, 1 mérks)
Solution: (&)

Sample space = [HT, TH, HH|
Bolh oulcomes head = [HH|

Required probability =

Cal | e

Q.30 Xand Yare tworandom independant events, It is known that AX) =040and P{Xu ¥S) =07,
Which one of the lollowing is the value of PLXw ¥)?

{a) 0.7 by 0.5
{c) 04 (d) 0.3
[CE. 2016 : 1 Mark, Set-11)
Solution: (a)
P(X v ¥t) = 07

= P(X) + P(Y") - F(X) P(Ye) = 07
{Since X, Y are independent evants)

= P(X)+ 1-PY)-PX)[1-P(Y) =0

= P(Y)-P(X Y} =03 )
POX L Y) = POO + POY) - PIX n )
=04 +03=07

Rule 5: Rule of Total Probabifity

Consider an event E which occurs via two different events A and B. Further more, et A & B be
mitually exclusive & cobectively exhaustive events. This situation may be represented by following
tree diagram

P(EIA)

E

Bng FEB

MNow, the probability of E is gven by value of tolal probability as

PE) = P(ANE]+P(BNE)=P{A)* P(E/ .
This ie called rule of total probability, +P(BnE) = P(A) * P(E/A) + P(B) "(E/B)

Somaelimes however, we may wish 1o know that. given thal the event E has already occured, what s
the probability that it occurred with A? In this case wa ean use Bayes Theorem given below.

Scdrireu py cdlnoacdriner




1

MADE EASY
= Probability and Statistics | 389

ILLUSTRATIVE EXAMPLES FROM GATE

.31 Two players, Aand B, altarnatgl keep rollin

gamé. Given that player 4 Q @ fair dice, The person to gel a six first wins the

starts the game, the probability that A wins the gama is

3
® b 3
7 2
[c) 14 3
3 &
{d} 11
[EE, GATE-2015 : 2 Marks, Set-1]
Solution: (d)
FAAwins) = p(6 In first throw by A) + pA not 6, B not 6, AB) + ...
-«1,551
B B 5 E_+”-
' L 5V (s5Y 19 &
= —|1 — i e HrLig -
(@) v
-(8)
Auls B; Bayes Theaoram
. paley = FACE)  PANE)

PIE) ~ P(A~E)+P(BRE)

? ) P(A)*P [Elﬁ}

| P{A)*PIE[A]+P(B) P(EB)

’ This formula is called Baye's Theorem. Notice that the denominator of Bayes theoram or forrmula is

| obtainad by using the rule of total probability,
I the tree diagram for the problem ks more simply represented as

é y.-.a. E
! \;'\\E : E
l Then the above Baye's formula gives
X2

pAlE) = =

| yi
and plBIE) =

| HZ + yi
| ILLUSTRATIVE EXAMPLES
|

Example:
Suppose we have 2 bags. Bag 1 contains 2 red & 5 green marbles. Bag 2 contains 2 red and

6 green marbles, A person losses a coin & if it is heads goes to bag 1 and draws a marble. If
I is tails, he goes to bag 2 and draws & marble. In this situation.

(3) What is the probahbility that the marble drawn this is Red?

(b) Given that the marble draw is red, what is probability that it came from bag 1.
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Solution: ; |
Thea tree diagram for above prablem, is shown Delow:

o, B30 ) —— Fed
”<Eu92 = Rea

P F.;H&d|.=1;g;.;2.f?+1||2:ﬁ:2fﬂ
P{baginfed) _ 12=2/?
(b) P(bag1|Red) = ~ PlAsd)  WZxelT+12x2[B
17
= —— =815
15156

ILLUSTRATIVE EXAMPLES FROM GATE

Q.32 Afair (unbiased) coinwas tossed four times in succassion and resulted in tn&rfnlmmg outcomes:
(i} Head, (i) Head, (iil) Head, (iv) Head. Tha prabability ol obtaining a Tail’ when the con iz

lossed again is
1
(@ 0 ) 5
1
@ 2 o %
[CE, GATE-2014 : 1 Mark, Set-2]
Salution : {b)
n(E)
"8 = a)
nis) = [[H., [T =2
KE) = KT} =1
PE) = 5

0.33 A bax contains 25 parts of which 10 are defective. Two parts are baing drawn simultaneously
in & random manner from the box. The probability of both the parts being good is

7
25
() 29 (d) %
Solution : (a) [ME, GATE-2014 : 1 Mark, Set-2]

18
. Co 1axis 7

requredprob = = = =—

: “C. T /w24 20

Q.34 Agroup consists of equal number of men and

of the women are unemployed. Ifa person is se

of the selactad parson oaing employed s

waman. Of this group 20% of the men and 50%
bested al random fram this group, the probability

——

[ME, GATE-2014 : 1 Mark, Set-3]
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Solution :
Lirerrphoyed = U
- e

Men (M) | Woman (W) Men (M) | Women (W)

PIM) = P(LIM) = 0.2
A= P(UIW) = 0.5
Lat E = Employed person
PEIM) = 1-0.2=08 ; PEW) =1-05=05
By total probability
Probability of selecting employed person,
F(E) = P{M) . FEIM) + P{W) . P{EIW)

1 i
= =¥ B+ =x05=065
EK +2:I{

(1.35 A fair coin Is tossed ntimes. The probability thal the difference batween the number of heads
and tails is (n —3) Is

(a) 27" () O
e "G 2" (d) 2n+?
[EE, GATE-2014 : 2 Marks, Sat-1]

Sedution : (b) _

Let number of heads = x. So number of tails will be n —x. Wi want the difference between he

number of heads and number of tails to ben-3

I8 x=(n=-x) = n=3.

= X = m2'3=n-%-.-mimisnmanhﬂagm

- which is an impossible event 50, the required probabiiity is zero.

(.36 Consider a dice with the property that the probability of & face with n dots showing Up is

portional to n. The probability aof the face with three dots showing upis .
o ) [EE, GATE-2014 : 1 Mark, Set-2]

Solution ;
|at probability of occurence of one dot is P.
So. writing total probability
P+2P+ 3P+ 4P+ 5P + B8P =1

1
P = 51
hence problem of occurence of 3dotis

3 1
= 3P=-=—=0142
21 7
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Q.37 Three companies X, ¥ and Z supply computers [0 a university. Tha percentage of compiage,
supplied by them and the probability of those being defective are labulated balow:

Company % of computer Probability of being
supplied delactive

X 60% 0.01

. 0% 0.02

Z 10% 0.03
Given that a computer is defective, the probability that it was supplied by ¥ is
(@) 0.1 {b) 0.2
(c) 03 {d) 0.4 [EC. GATE-2006, 2 marks)

Sofution: (d)
5 —s supply by v, d — defective
Probability that the computer was supplied by v, if tha product is defactive

_ Plsnd)
P(s/c) 3

Plend) = 0.3 x0.02 =0.006
P{d) = 0.6x 0.7 + 0.3 x 0.02 + 0.1 x.0.03 = 0.015
0.006
Pis/d) = D018 = 0.4

Q.38 Ina housing society, half of the families have a single child per family, while the remaining half
have two children per family. The probability that a child picked at random, has a gibling is

[EC, GATE-2014 : 1 Mark, Set-1]
Solution :

Lat thera n families. Now % families have single child and % tamilies have two children. So
total number of children is

n n ey
= =uld—nud=—
b 2

MNow, favourable case is the child picked at random has sibling = n,

So probability (a child picked at random, has a sibling) = % =2 = 0.666
; 3
2
Q.38 Anunblasad coin is tossed an infinite number of times. The probability that the fourth nead
appears at the tenth toss is

{a) 0087 (k) 0,073
tc) 0.082 (d) 0.091 [EC, GATE-2014 :
Solution ; (c) . PR

It means 3-haad appears in 129 trials,
Probability of getting exactly 3 head in 17 9 trals

J d |
- 1 i 1
Cox(3) (3) = oex(3)
and in 10" trial head must appears.
So required probability

5
g 1 1 a4
3[2] Xz 1024 B
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(.40 Parcels from sendar S i receiver R

office has a probability 1/5 of log
Giventhalta parcel 9

Salution :

Probability to log) 2 Port-oflice 1 =

Probability to lost gt port-otfice 2

lotal probabi ity 10 lost

Required Probabiity =

Q.41 Consider a company thal assembl
computar i p. The company tharefor
testing process gives ihe correct resy

———__ Probability and Statistics | 393

a8 x
:nr-;: saquentiay through two post-offices, Each post-
i oo
's lost, the prebability hay ming parcel, indeperdently of all other parcals.

It was iosy by the secand post-officeis .
[EC, GATE-2014 : 2 Marks, Set-4]

Y

+
Ko ool

& | — En| B BN
o

5

|

o
o
(]
o

4
5 =0.444

8% computars The probability of a faulty assambly of any
& subjects each computer 1o a lesting process. This
It for any computer with a probability of g, What is the

probability of & computer being declared fauin?

@ po+(1-pil1-q)
{c) (1-plg

Solution: (&)

-'E,-r"', lauhy

(b) {1 - qip
(d) pag
[CS, GATE-2010, 2 marks]

h1"..".‘;|"'- ceclared nat tauly

1=q
;\—\l?\-\ Oeclarad laul
nat fauly o~

q ™ dechred not fAuly

The tree diagram of probabilities |s shown abave
From above Iree, by nie of total probability,
p{declared faulty) = pg+(1-p}(1-q)

Q.42 Four fali six-sided dice are rolled. The probebility that the sum of the resullzs being 22 Is

%1296, The value of X is .

Selution: (10)

4!
6664 = ET|="1"""E'-"‘E'

4
— =6 ways
6,655 = 315] ¥

6+4 6+
—i " 1208 1206

el 1206

Probability of sum to be 22 =

¥=10

==

Q.43 The probatility that a given positl
divisile by 2. 3or 518 _—
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[CS, GATE-2014 ;: 2 Marks, Set-1]

X

va integer iymg betweaan 1 and 100 (bath inciusive) is MOT

[CS, GATE-2014 : 2 Marks- Set-2]
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Solution: (0.26)
1<xs 100
Pix is not divisible by 2, 3 of &) = 1 - P{xis divisible Dy 2,30 5)
SEERELIETEIE
2 3 5 B 15 10 30
74

1- 100 - = 0.26

0.44 Let S be a sample space and wo mutually exclusive events AandBbesuchthat AuB=S,
he maximum value of P(A) F(B) is

If P(-) denotes the probability of the avanl, 1
[CS, 2014 : 2 Marks-Sel-3]

Solution: (0.25)
It is given that A and B are mulually exclusive also it is glven that Aw B = S

which means that A and B are collactively exhaustive,

Now if two events A and B are bolh mutually exclusive and o
PiA)+PB)=1=FB)=1- P{A)

haow we wish 1o maximize P{A) F(B)

Raciively exhaustive, then

= P{A) (1 - (AN
Let PlA) = x
Mow PUAN(1 - PIA)) = 21 - x) = x - &
Say y=x-x
dY  q_oy= o
E’-I 2y=0=21x 5

- O 5 A [
d—j-—z D'[E’]"f_hn
z

yhas maximum at x =112, Y, = %_[%]z =0.25

Q.45 Consider the following experimant.
Step 1. Flip a fair coin wice.
Stap 2. If the outcomes are ({TAILS, HEADS) then output ¥ and stop.
Siep 3. If the cutcomes are sither (HEADS, HEADS) or (HEADS, TAILS), then output A and stop.

Step 4. If the outcomes are (TAILS, TAILS), then go to Step 1
The probability that the oulput of the experiment is Yis

T—Nmp

H'm'l"
H N stop
T N stop

o, ,-_,\::H Output ¥

[up fo two decimal places).
[CS, 2016 : 2 Marks, Set-1]

Solution:
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The tree diagram for the problem jg given above.
The desired output is ¥,

Now by rule of total probabiiity

ploulput = ¥) =05 %05+ 05 %x05=05x0.5+.
Infinite geomatnc series with

a=05x%x05
and r=05x05
05%05 025
80 .E‘{DUTG'M= '!l"' = -
) 1-0&=058 075

1
3 = 0.33 (upto 2 decimal places)

(.48 Supposa that a shop has an equal number of LED bulbs aof twa different types. The probabiiity
of an LED bulb lasting more than 100 hours given that it is of Type 1 is 0.7, and given that it
s of Type 2 is 0.4. The probability that an LED bulb chosen uniformly at random lasis more

than 100 hours is .

[CS, 2016 : 1 Mark, Set-2]

Solution:

0.7 lasts > 100 hrs

Type 1

&4
0.5 Tmz_ﬂ—bhm = 100 hrs

Pllosts = 100he) = 05 = 0.7 + 0.5 x 04
=035 + 0.2 =055

Q.47 Three cards were drawn from a pack of 52 cards. The probability that they are a king, a
queen, and a jack is

64
16
@ 5525 ®) Z197
g
0 ™ Ses75
[ME, 2016 : 2 Marks, Sat-3]
Solution: {a)
dg, -4c, *4c, B4 _ B4 18
52, = BZx51x50 ~ 22100 5525
. ﬁﬂ:ﬂ
3.2 STATISTICS
52.1 Introduction
5 ua the tools to deal with large quantities of data

Statistice is a branch of mathematics which give _ v
and dari..r:a meaningful conclusions about tha data, To do this, statistics uses st:ma_ numt:u?rs ar
measures which describe the general features contained in the data. n othar words, using statistics,
W can summarise large quantities of data, by a few descriptive measures.
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Two descriplive measures are oflen used o summarise data sets. These are

1. Measure of contral lendancy

2. Measure ol dispersion

The cantral tendency measure indicates the average value of data, where "average” iz a Generic g,
used 10 indicate a representalive value \hat describes the general centre of the data.

The disper sion measure characterises the extent to which data items differ fromihe ceniral teng,,,
value. In ather words disparsion measures and quantifies the variation in cata. The larger this nump,,
the mare the vanoation ancngst [he daia ltema, I
hiean, Median and Licde are some examples of central lendency measties.

Standard deviation, variance and coafficient of variation are exampies ¢f dispersion measurgs
Mow we will sludy each of these six statistical mewsures in greatar oatail

5.2.2 Arithmetic Mean

5.2.2,1 Arithmatic Mean for Raw Data -
The fomulg for caloul ating the arilhenalic mean for raw data is: §= -

% - anthmetic mean

% - refars fo the value of an obsansation

i - number of obsendations.

ILLUSTRATIVE EXAMPLES
Examplo:

The rumizer of visits made by (an mothers 1o a clinic were 865574597 4
Calculaie the average nuember of visils.
solution:
£x = 1otal of all thesa numbaers of visits, Lhat is the total number of visils made by all mashers.
B+E+5+84+7+4+5+9+T+4 =60
Mumcearof moatharsn = 10
N = E = @ =
n 10
5.2.2.2 The Arithmatic Mean for Grouped Data (Frequency Distribution)

The formuls tor the arilhmatic mean caleulated froma frequency distribulion has to be amended to
include the frequency. It becomas

&

o _ Ek)
s E [
ILLUSTRATIVE EXAMPLES

Example:

Toshow how we can caloulate the albmetic mean of a grouped frequency distribution, thea is
& example of weights of 75 pigs.

|
!
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The classes and requancies are given i fliawing tabie

Weight(kg) [ Midpom: of siass ThomEe Fgs| T |
o | Meaeny) | |
| 208under30 | a5 i 115""|

| 30& under a0 | i : r::

W& under a0 | e , R
[ S0 uwnderBo | jp |
C0&under70 | g5 = ! E;E"'i
| T0&urdardn | 35— t——— —5e
__E-'D & under 90 BE — '5 d;; {
| 90 & under 100 axg, i | 3;':' .
100 & under 110 105 5 '5.',"-‘-71
Tetal Bl et -~ ?I

Solution:

As gurvalues for x in the farmula for the arithmetic mear wa usa the midpoints of the classes

k) 4308
In this Casea ¥ = — s — =574k
xf TS e
5.2.3 Median

Arithmetic mean is the central value of the distnbution in the sense that positive and neoative devations
from the arnthmetc mean balance eact ather, Itis & quantitative zverana.
On the other hand, median is the central value of the disthbubon in the sense thal the number of
values less than the median is egual to the numiDer of values greater than the median, 5o, median is
a positonal average. Median is 1he central value in 8 sanse dfferent from the anthmetic mean. In
case ol the arithmeatic mean it is the "numerical magnitude® of ihe davatons 1hat balances. But, for
tne median it is the ‘number of values areater than the median which balances aganst ine number
of values of less than the median,

5.2.3.1 Median for Raw Data
I general, it we have r values of x they can be aranged in ascending ordar as:
oy & < ¥

(n+1) i
Suppose n is odd, fhen Madan = the 5 -thvalue

Howevar, if n is even, we have two midd'e ponts
i -y
n n -,
il |_; §-=f - 1] '-'EIU';'
3 ] Waluit [ 2

Median = ——

ILLUSTRATIVEEXAMPLES

Exampla;

The heights (in cm) of s studenis in class afe 160, 157, 156, 161, 158, 162, What is median haght?

TIVV Ry SR UL e
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Solution:
Arranging the heights in ascending order 156, 157,153,160, 161, 162
Two middle most values are the 3™ and 47

Median = %l155+ 160)=139.3

3.2.3.2 Median for Grouped Data

N+1}"
1. |dentify the madian class which contains the middie observation [T J observabon) This can

be done by chsarving the first class in which the cumulation frequency 1s equal 1o or more than

M+ 1
o Hera, M = Ef = 1otal number of observalions,

2. Calculate Median as follows:

[!'.‘.11 E-[F-H}
L+ 2 C ®h

Median =
Whiere. L = Lower limil of median class
M = Total number of data items = EF
F = Cumulative frequency of the class immediately precading the median class
i, = Frequencyol median class
h = widlh ol madian class
ILLUSTRATIVE EXAMPLES
Example:
Consider the following table giving the marks cbtained by students i an exam
MarkRange | f NootStudents | Cumulative Freguency
0=20 Z 2
20 =40 3 5
40 - 60 10 15
60 = BO 15 30
80 — 100 20 50
Solution:
M1
Here, —- = %5

The class G0-B0 is the median class since cumulative frequency is 30 >25.5

80 +[25-5—[15 +1}]

Median = 5 x 20 = 63.66 = 69.7

- Median marks of the class 1s approximately 637,
1.€. (al jeast) half e students got less than 69,7 and {almos:) half got more than 63,7 marks

iy
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sj':ﬂm js defined as the vakue of the variable which occurs miost fregquertly

_'I_I.l Mode for Raw Data
’ aw data, the most frequently accuring cbservation is the mode. That is data with highest frequency
w mode. It there is more than one data with highes! frequency, then each of them is a mode. Thus we

=] 5
nave Unimodal (single mode). Bimodal (iwe modes) and Trimodal (three modes) data seis

ILLUSTRATIVE EXAMPLES

Find the mode of the data set: 50, 50, 70. 50, 50, 70, BO.

Solution:
1. Arrange in ascending order: 50, 80, 50, 50, 80, 70, 70

2 Make a discrete data frequency table: Data | Frequency

o0 4
&0 1
70 2

Since. 50 is the data with maximum frequency, made is 50. Thes is a unimodal gata sel.

52.42 Mode for Grouped Data

Mode i that value of x for which the frequency is madmum. If the values of x are grouped into the classes

[such that they are uniformiy distributed within arry class) and we have a frequency distribution then:

1. ldentfy the class which has the largest frequency (modal class)

2. Calculate the mode as

Mode = L + —E’—-{'— =
26-h-b

Lower Wmit of the modal class
Largest frequency (frequency of Modal Class)
Fraquency in the class preceding the modal class
Frequency in the class next to the modal class
Width of the modal class

'q—n_.—hn—h —
n nu

=
1}

' ILLUSTRATIVE EXAMPLES

Example:
Dala relaling o the height of 352 school students are given in the foliowing frequency distribution.

| Calculate the modal hesght.

Heigh {in leet) | Number of sludents

5 30-95 12
| 35-4.0 37
! 40-45 78
i 45-50 152
E0-55 85

55-6.0 T
Total a52
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Sabution

arean 15 s et fratquanty, thi rracdal edis
‘

[t I 'i Y 1. ]I:'I.l" i it I:__ ‘J'.- h E).53

e |'.f"\! L I:_.lrl:l

" r .
[ b AT Tr_.hrJ ;:rj = # ﬂ'd = A ?.FJr"l[.l-j'l-!Td}
. H1r1:lr'|l| 1 i |

ILLUSTRATIVE EXAMPLES FROM GATE

CLAB Wrack cren ef Ths bealbeinig utaternenta b T trues?
et Lran thes arreun of s persion

if rrean, prcde and redian ane [he Lams

b

I Tris peospanparey of sbeenganitans, 1% Opa R
ftap A sisyrreminton clininbutes, B Frrliaraty
fr1 I & prsdnely skerandd distiteten moan s rraciian = s
fedy Ir s rdgegmativealy e pandd clintrabintind Fricitle o TPEEn > FTEEAT

[CE, GATE-2008, 1 mark|

Snlution: (d)
""" e batiny, MOGEE X Median -

- EF . e
by Frigap Pk Tal ) 17 naal TPigs S 3 P E Ry SRR T

4 E

5.2.5 PropertiesRelating Mean, Median and Mode
1. Erngureicial rinele = 4 msdian — F maan
dtr e spprnrnEn dalee of i o recuired abg e ermipncal forrmuia for mode may Oe used

% There are ens s of freausnty distribubons

Fegig by izt SHEgELl, SyThirT aine, el rrgEiinaTy etegrandd el inmhing

&
F 4

i
. -

ETREARRE i ot Ia) Syvreralrs l@) Miggal saly Sened

{a) In postively skewed distributon

PMods = Medisn = Kean
fi) In syrmarecind CHEtnDULon

Mean = Median = Made
i,y Irimgrat .|"'.!,r' cerpntye] edigtrignhinn

Mean < Mamian s Modes

5.2.6 Standard Deviation
Stancard Deviation is ameasurs of dispersion of vanation arongst data.
Instead of tebing ahool e deviation from he arithmeatic mean, we may square each deviation and
oiain the arthrmetc mean of squared devishons. This gives us 1he variance' of the values.
Thie postre sguare oot of the vanance 15 called 1ne “Standard Deviation' of the given values

5.2.6.1 Standard Deviation for Raw Data
LIS ¥ .r':__ SR ol 1) walues of the » {70 arithrmetic maan FE-
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. ﬁl'-‘ﬁ and x; — X %3 — ¥ ..x, - ¥ are ihe deviations of the values of x from % . Then

i

e nT Eix - &) is the variance of x. Il can be shown that
2

i, - _ g2 g2 _NEY ‘f_E“af

=t e n :

. it is conventional to represents the variance by the symbol . Infact, o is small sigma and . is

i capital sigme.

Suare root of the variance is the standard deviation

o= +fTom 5P - [FA R - 12K s

I ILLUSTRATIVE EXAMPLES

o=

Example:
Consider three students in a class, and their marks in exam was 50, 80 and 70, What is the

slandard deviation of this data sef?

Solution:
. b X
: Siudent | Marks
i A 50 | 2500
i B 60 | 3600
! c 70 | 4200
' 180 | 11000
- Here, n=23
| n.E:f—{Ex,}z 3 3 11000 — {180)°
Standard Deviation (@) = —— = = 7
i = 8.165
: Varignce = = BEET
| 5.1.6.2 Standa tion for Grouped Data
| . o ata can be shown by this example:

Calculation for standard deviation lor grouped d

ILLUSTRATIVE EXAMPLES

Exampla: |
! The frequency distribution for heights of 1500
for which we have to calculate standard devialkon.

ung ladies in a beauty contest is gven below
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S0
Solution:
Height (ininches) | Mid values x |Frequency f| fxx | fxx |
4725075
69.5 - 65.0 64.25 20 ‘Eﬂf'm 121045.75
65.0- BB.5 65.75 28 1841, il
66.5 - 68.0 67.25 s 121050 | goa0e 125
G8.0- 685 68.75 19 1306.25 P
69.5-T710 70.25 20 1405.00 Aot e
71.0- 125 71.75 30 :?1?;.?2 sB LA B
72.5-740 73.25 3 219. aliinalic
Total 150 10173.00 | 591308375 |
= 10173
- - F.
Thus, R = 3 e §7.82
whers, N=E = 180

Thearaiare, the standard deviation of xis

sz:ﬁ-mx,}? i J15ﬂxﬂ-91305.3?5-—tm‘i?3f
T - (150

3.03
6,2=(3.032 =8.170

L]

Varancs

5.2.7 Variance
The square of standard deviation (o) is called as the variance (o).
Soif @ = 10, then variance = g° = 100.

Alternatively il variance = o = 100 then standard deviation = /Vanance = 100 =10
The larger the standard deviation, larger will be the variance,

5.2.8 Coefficient of Variation

The standard deviation is an absolute measure of dispersion and hence can not be usad for companng
variability of 2 data sats with differant means.
Therefore, such comparisons are done by usng a relative measure of dispersion called coefficient of
variation (CV).

[+

GM':E

whera o is the standard deviation and p is the mean of the data set

CV s often representad as a percentage,

oVe = Exmn

When comparing dala sets, the data set with larger value of CV9% is more variable (less eonsistent]
as compared to a data set with lesser value of Cyog,

_——"ﬁr
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For example:

B

u|o|Cve
Data set 1] & 1] 20%

| Datasel 2 |20 |2 70%

a
rll I 2 for EI?.[E_ 1 I F= 1, dala sel 2 is EEIHH“}' less variable

| has a CV % of 20%, act that data set 2 has a CV % of 10%, while dala set

Sﬂcmﬂpansnnff variabilty between 2 or more dala sats (with different maans) should be done by
comparing CV % and not by comparing standarg deviationg

ILLUSTRATIVE EXAMPLES FROM GATE

.49 If the ;l:rﬁrmmiqn ::f the spot speed of vehiclas in a highway is 8.8 kmph and the mean
(a) 0.1517 19818 33 kmeh, the coefficient of variation in speed is
ay 0.

0.2666 (b Q87

i (dl 0.3646

Solution: (c) [CE, GATE-2007, 2 marke]
5.8

Q.50 Consider the finite sequence of random values X = [x,. %, ... x| Letp_ be the mean and a_ be
the standard deviation of X, Let another finite sequence ¥ of aqual }m;th be derived I'rnm'mis
as y =a+*x+b, where a and b are posilive constant. Let H, be the mean and o, be the
standard deviation of this sequence. Which one of the lollowing slatements IM:GHHEEW
{a) Index position of mode of X in X is the same as the index position of mode of ¥ in Y.

(b) Index position of median of X in X is the same as the index position of medianof ¥ in ¥
c) p=ap,+b
(d) o, =a0, +b

[CS, GATE-2011, 2 marks]

Solution: (d)
Slandard deviation is affected by scale but not by shift of origin.
S0 Y, = ar,+b
= g, = ag,
(ifa could be negative than g, = lals, is more correct since standard deviation cannot be negative)
Clearty, a, = ag, + bisfalse

30 (d) iz incorrect.

Q.51 Type Il emor in hypothesis testing is
(8) acceptance of the null hypothesis when it is false and should be rejected
(b) rejection of the null hypothesis when it is true and should be accepted
(c) rejection of the null hypothesis when il is false and should be rejecied
(d) acceptance of the null hypothesis when it is true and should be accepted
[CE. 2016 : 1 Mark, Set-1]
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Solution:

+(4-x"). 0sxs2
) = 0 . Otherwise

b= [t (x)os
2 x
< Mean () = -[n IIH—J’]D&
2
of o_x* ¥ | 8 32 16
=Ju(‘ 'a]d"=[3 20) "3 20 15 = 1066
.52 The spot speeds {expressed in kmvhr) chserved at a road section are B6. 62, 45, 79, 32,

51, 58, 60, 53, and 49. The median speed (expressed in km/hr) is .
{Mote: answer with one decimal accuwacy)

[CE. 2016 : 1 Mark, Set-I1]

Solution:
Median speed is the speed at the middle value in series of spot speeds that are arranged in
- ascending order. 50% of speed values will be greater than the median 50% will be less than
{ the median,
' Ascending order of spot speed studies are
32, 39, 45, 51, 53, 56, €60, 62, 66, 79

53;53-54_5 kmyfhr

Median speed =

Q.53 If fix) and g (x) are two probability density functions,

£+1 o-azx=0 I, ¢ =gox<
4 -
.[_u_--qul:;+1 : Osxsa : gl)=JZ%X . pgxea
&
0 . otherwise 0 olherwise

e

Which one of the lollowing statements is true?
(2) Mean of fx)and g(x) are same; Variance of fx) and g{x) are same
(B) Mean of fx) and g(x) are same; Variance of fix) and g{x) are different
(c) Mean of fx)and gx) are different; Variance of fx) and g(x) are same
(d) Mean of fx)and g{x) are different; Variance of fix) and gx) are different
[CE, 20186 : 2 Marks, Set-11]

P i oy i

Solution: (b)
Mean of f{x) is E(x)
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varfance of i(x) is E(x)® _ [Efx)2} whare

&
4 3
r= ] £ - s
- (@ 4) ()2
i da 3 5
= va:iancaia—ag-

Next, mean of gix) is E{x)

.I:x(_—;i]ﬂx + I: h‘[g_]ﬂ# m [

Variance of gix) is E(x?) - (E(x)|2, where

L [ =X a 3
&) = |° ( - ]dx+‘[nx2[£]m=i'2_

3
= Varlance is g

2
-~ Mean of i(x) and g(x) are sams but variance of f{x) and g9x) are different
53 PROBABILITY DISTRIBUTIONS

53.1 RandomVariables

It s frequantly the case when an experimant is performed that we are mainly interested in some
function of the outcome as opposed to the aclual outcome itsalf,

For instances, in tossing dice we ane often interested in the sum of two dice and are not raally concemed
about the saparate value of each die. That is, we may be interested in knowing that the sum is 7 and not
baconcamed over whether the actual oulcome was (1, 68 or (2. 5) or (3, 4) or (4, 3) or (5, 2) or (6, 1),
Also, in con flipping we may ba interested in the tolal number of heads that ocour and not care at all
about the actual head tail sequence that results. These quantities of intereat, or more formally, thase
real valued functions defined on the sampla space, are known as random variables.

Bacause the value of a random variable is determined by the outcome of the experiment, we may
assign probabilities to the possible values of the random variable,

Typas of Random Variable: Random variable may ba discrete or continuous.

Discrete Random Variabla: A variable that can take one valua from a discrate set of values.

_ Example: Let x denotes sum of 2 dice, Now x is a discrate random variable as it can lake one value
: from the set |2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12], since the sum of 2 dice can only be cne of these values.
Continuous Random Variable: A variable that can taks one value form & continuous range of values.
Example: « denatas the voluma of Pepsiin a 500mi cup. Mow x may be & number from 0 to 500, any
af which value, x may take.

53.1.1 Probability density function (PDF) |
Let x ba continuous randarm variable then its POF F{x) Is defined such that

. Fgzo 2, TF:x}dx =1 a. Pla<x<h)= [Flx)x

——— T T T S ST T
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5.3.1.2 Probability mass function (PMF)
Lel x be discrete random varable then its PMF plx) s delined such thal
1. pix) =P =x] 2 phyz0 a3 Ep(x)=1

3.3.2 Distributions
Based on this we can divide distributions also into discrate distribution (based on a discrete randgry,

variabie) or continuous distribution (based on a continuous random varable).
Examples of discrete distribution are binomial, Poisson and hypergeometric distributions
Examples of contimsous distribution are uniform, normal and exponential distributions

5.3.2.1 Properties of Discrete Distribution
Px) =1
Elx) = ExP{x)
Vix) = E () - (E(x))? = Ex2P(x] - [ExP(x)}?
E(x) denotes expected value or average value of the random variable =, while V(x} denctes the
vanance of the random vanabile x.

5.3.2.2 Properties of Continuous Distribution

J' f(x)dx

1

Fix)

_[ 1 x jdix (cumuiative distribution function)

Eix)

I wf{x)dx

J $2H{x)bx - [:f :dfx]ndx]z
- : 1]

plasx<bl=Pla<x<b)=Plasxsb)= [fix)dx

a

Vix) = E(x*) - [E(x)]®

pla < ® < b)

5.3.3 Typesof Distributions
Discreta Distributions:
1. General Discrete Disribulion 2. Binomial Distribution 3. Hypergeomelric Disribution
4. Geometric Distribution 5. Poisson Distribution

5.3.3.1 General Discrete Distribution
Let ¥ ba a discrete random variable.
A tabla of possible values of x versus comasponding probability values plx) ks called as ts probability
distribution {atle.
Example:
Let ¥ ba the number which comeas on a single throw of a dice.
Then probability distribution table of X is given oy
® |T|E|E|4|5|ﬁ

1111711101
”xj‘ﬁ‘ﬂﬂﬁlﬁ‘ﬂ
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i this case piX) Is same for all valyes o

For example. Iﬂt.}F hE.m? Sum of the numbars coming on a pair of dice thrown,
Now the probability distribution table can be consiructed as lollows

x [2]3 )41 [10]11]12

J_‘Ei 1| J =Y
MY | 36 | 36 | 36 36 | 36 | 36
Notice, that here pix) is not same for all values of X,
In any probabiity distribution tabie

Ip{x) = 1 is alweys true

X, but this is not necessary, as following example shows.

Take the case of simple dice
x |1]2|3]|4|5]|6
P 1‘:‘1‘1‘1

il === ==
L A

l i
I Notice that Lpix} = _+l+l+l+_1+_1 =1

6 6 B B8 B B
From above table, we can compute the Iallowing:
K= = 1
pix =3) a
' 1 1 1 1 4 2
| X e Rl b et R
PARY) = R T ETE " 3
| oo Y] i
| }:53 = — T — = g
| WA= 58" "3
! T 1. 1 3 1
Nedl = =d—f—== = —
| Pi<d) = g*8*s78 "2
i Alsc from above 1able, we can compute the expected valua and variance of x.
l Elx) = Lxp(x)

Vix) = E(x®) - [E{x)P = Zxp(x) - [Z = p{x)}?
' E{x) i the expected value of x and is similar to an average value of x after infinite numbaer of trials.

So, E(x) is somatimes also writlen as ..
Vi) represents the variability of X. So it is sometimes writter as of

i S0, @, = ,f/W{x) . which is the standard deviation of X.

Also expected value of any function g(x) of x can be computad as folkows:
E(glx)) = Zglpix)

For example,
E(®) = D pix) and E{x* + 1) = E(x* + 1) p(x)

! For tha single dice probability distribution fabie,

1 1 1
L PRI TR T )
Exp(x) 1:E+EHE+ + :-:E 35

P, = Elx)
and a,2=V(x) = DEp(x) - [Zx peP?

- 'IEHl-IrEz :-c1+EI2 4
s 6 B

= J3ETT = 1.7078

L[}

1

1
E__._+EF xg] - (350 =2917

0
i
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Properties of Expectation and Variance:
If x, and x, are iwo random variance and & and b are constants,
Elax, + b) = aE{x)+Db i
Viax, + b} = a®V(x,) ™
E{ax, + bx,) = aE(x,)+ b E(x) i
Viax, + bx,) = a” V(x,) + B¥WV(x,) + 28b cov{x,, ) M

whera cov(x,, x,) represents the covanance between x, and X,
It x, and x, are independent, then covix,, x,) = 0 and the above formula reduces 1o
Viax, + bx.) = a?Vix, ) + bAV{x,) fu)
For example, from above lormula we can say
Elx, + %) = E(x,)+ E{x;)

E{x, - x,) = E(x,)-E{x;)

Wi, o) = Wi, - %) = Ve + Vi)
Formula for calcutating covariance between X and Y

Cov(X. Y) = E(XY)-E{X)E(Y)
= X, Y are independant Ef¥Y) = E{X)E(Y)
and hence CowlX.¥) =0

ILLUSTRATIVE EXAMPLES FROM GATE

Q.54 In an experiment, positive and nagative values are equally likely 1o occur. The probability of
obtaining at most one negative valua in five trials s

2
@ 35 ) 5
&
© 3 @ 2
[CE, GATE-2012, 2 marks]
Solution: (d)

Since negative and positive are equally likely, the distribution of number of negative values 1s
i
binomial withn=5andp = =

Lat X represent number of negative values in 5 trials.

plat most 1 negative value)
= p{x=1)
= pix = 0) + pfx = 1)

3]G =(3)3) - &

Q.55 Consider the following probability mass function (p.m.t.) ol a random variable A

g IF¥ =0
pl¥g={1-g 1x=1
0 otherwize

If g = 0.4, the variance of X is
[CE, GATE-2015 : 1 Mark, Set-1]
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ution:
Givan, g=04

el
MX)| 04|06
Aequired value = V(X) = E(X?) - [EMX)P

= X Xp =0x04+1x06=08

E(X) = ¥ X'p, =07 %0447 x06=06

MUY = E(X7)-[E(X)F = 0.6-0.36 = 0.24

0.56 In the fellowing table, « is a discrete random variable and pix} is the probability density. The
slandard deviation of x is

l_". 1 5 3
pix)|03T06 (07
{a) 018 (o) 0.36
{c) 054 {d) 0.6
[ME, 2014 : 2 Marks, Set-2)
lution ; (d)
5 hdean,

¥ = Explx)= 1x03+2x08+3=01=18
Standard deviation,

o = | Epl) — (Expl))’)
a= {0.3: F406x2 +01xF —T.\EF}"i
= {3.6 - 188" =(0.36)'7 = 0.6

(.57 A machine produces 0, 1 or 2 defective pieces in a day with associated probability of 148, 2/
3 and 1/8, respectively. The mean value and the vanance of the number of defecive pleces
produced by the machine in a day, respectively. are

{a) t1and 1/3 b) 19 am;i:w3
1 and 4/3 {d) 1/3anc
e [ME, 2014 : 2 Marks, Set-3]
Solution : (a)
x | O 1 2
1 2 1
ad I I
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Q.58 Two coins A ans § are tossad, The 4 jornt events HeHs TaTs Fals THg have Probabiyjeg
0.28, 0.18, 0.30, 0.24, respeciively, where Hrepresants head and Trepresants tail Which gng
of the following is TRUE?

{a) The coin losses are independent (b) Ais Ial_r, Sis ncx
{c) Sis fair, Ais not (d) The coin tosses are dependan

[EE, GATE-2015 : 2 Marks, EEI:-E]

Solution: (d)

From the given informatian, we can create a joint probability table as follows:

R| He| Ta

=
| -
M, | 0.28| D24 | D.52

T, | 0.30| 0.98 | .48

056 042 1

From fhe table, we can gst
P{Hg) =0.58, P(Tg) =0.42, P(Hgl = 0.52
P(Ts)=0. 48
S0, Coins Rand S are biased (not fair). So choices (b) and (c) are both lalsg. .
The coin tosaes are not independent since their probability of feads and tails is net 0.5
Rand 5 are dependant.
If Rand 5 were independent then all tha joint probabilites will be equal to fhe product af the
marginal probabilities.

For example
H.HHI'-F HS-:I = DEE
P(H.}- AHg = 0.58 x 0.52 = D.3016
Clearly AlH,m Ha)# P{Hg)- AlHg)
So fand Sara not independant.
i.e. Hand $are dependent. S50, choice (a) is false and choice (d) is true.
(.58 An examination paper has 150 mulliple-choice questions of one mark each, with each EyuEShon
having four choices. Each incorrect answear fatchas - 0.25 mark. Suppose 1000 students choos?

all their answers randamly with uniform probablity. The sum total of the expectad marks obtained
by all these sludents is

(a) O (b) 2550
{c) 7525 (d} 8375 [CS, GATE-2004, 2 marks]
Solution: (d)

Lat the marks obtained per quastion be a random variabie X,
Its probabisty distribution lable is given balow:
X | 1 |-0.25
p(x) 174 | 3/4
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Expectad marke par question = Eqx)
= EXp(X)

13 174 + (~0.25) x 3/4 = 1/4 - 316 = 1/16 marks

Total marks @xpacted for 150 questions = 1/16 x 150 = % marks per student

Total expected marks of 1000 studenis = ?T: « 1000 = G375 marks
S, correct answes is (d).

.60 If the difference betwean the expectation of the square of a random variable (E[x*] and 1he
square of the expactation of the random variabla (E[x])? is denatad by R, then

fa) R=0 () R<0
c) Az0 (@ A>0
[CS, GATE-2011, 1 marks]
Solution: (c)

Vix) = E{x%) - [E(x)]? = R
where Vix) is the variance of x,
Sinca Varance 15 cl'ﬁ and hence naver negative, Rz 0.

0.61 Consider a random variable X thal takes values +1 and -1 with probability 0.5 each. The
values of the cumulative distribution function Flx) at x = =1 and +1 are

(a) Dand0.5 (b} Oand 1
fc) O.5and1 (d) 0.25and 075
[CS, GATE-2012, 1 mark]
Selution: (c)
The p.d.f. of the random variable is
¥ =11 +1
P(x) |05 |05
The curnulative distribution function F(x) is the probability uplo x as given below:
x | -1+
Hx)| 05|10
S0 correct option is (c).

5.3.3.2 Binomial Distribution

Suppose that a trial or an experiment, whose oUlCome can be classified as either a suCcCess or &

failure iz performed : . ;
Suppose now that n independent trials, each of which rasults in a success with probability p and in

afailure with probability 1 - p, are (o be performed. _ i o
I X represents the number of successes thal occur in the n trials, then X is said to be binomial
random variable with parameters (n, ). - ;
The Binomial distribution occurs when experiment performed satisfias the three assumptions of
Bernoull trials, which are: _

1. Ondy 2 cuteomes are possible, success and failure ; :
2. Probability of success (p) and failure (1- p) remains same from rial to trial
3. Thetrials are statistically independent. | The culcome of one trial doas not influence subsegquant

ridls, i.e. No memary.
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These assumptions are satisfied in following types of problams:
(a) dica problems.
(b} eein toss problems.
(€} sampling with replacement from a finite population,
(d) sampling with or without replacement frem an infinite (large) popufation,
The probability of oblaining x successes from n irials is given by the binomial distritzution §
P(X=x) = nC, p* (1-pf*~*.
Where p is the probability of success in any trial and (1-p) = o is the probabilty of failure.

Mg,

ILLUSTRATIVE EXAMPLES
Exampla: 1
10 dice are thrown, What ig tha probabillity of getting axactly 2 sixes.
Solution:
¥
P2 = 100,14 (54] -0z
Exampla: 2

It 18 known that screws produced by a certain campany will be defective with probability 0,04
independently of each other. The company sells the screws in packages of 10 and offarg a

replacament guarantee thal atmast 1 of the 10 serews is defestive. What propartion of packages
sold must the company replace?
Solution:

If X ia the number of defective serews in a packages, then X Is a binomial varable with
parameters (10, 0.01), Hance, the orcbability that & package will have 1o be replaced fs:

P(X22) = 1-[P(XS1)] = 1-[PX=0}+P|X= 11
ol i [[';](ﬂ.m (0.8 4 [1?}9.01}‘tu.99h”]
= 0.004

Hence anly 0.4% of packages will have o be replaced.
For Binomial Distribution:

Mean = E[X] =np
Verlancs = V[X] =np (1 -p)
Example: 3
100 dice are thrown. How many are axpecied to fall 6, What iz the variance in the number of
B's,
Solution:

E(x) = np=100x 1% = 18.7 =17
Sa, 17 out of 100 are expected to fall 6.

V(%) = np{1-p)=1005%1/8 % (1-18) = 129
=0, vanance s number of 6's = 13.9,
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ILLUSTRATIVE EXAMPLES FROM GATE

0.62 A box cantains 10 screws. 3 of which are detactive, Two sorews ang drawn al random with
replacemant. The probability that noms of i v b gt s

fo). 1005 {n) 50%
o) 4k (d) None of these
[CE, GATE-2003, 1 mark]
solution: {(c)

This problem is o be solved by binomial distribution, since although population Is finite,
pling is done wilh replacement and so probability does not change from Irial to trial.

Here, n= 2
¥ = O{nodatactiva)
. 3
P = pldefactive) = 0
a 2
3 3
i x=0) = {_] [1__
S0 plx=0) = 2G| 5 T
= 0,49 = 49%

0.63 A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability
that exacthy 2 of the chosan iterns ara defactive is

(a) 0.0038 {b) 0.1937
(c) 0.2234 {d) 03874
[ME, GATE-2005, 1 mark]
Solution: (b)

This problem can be done using binomial distribution since population is Infinite.

Probability of defective item,
p o= 0.1

Probability of non-defactive itern,
q=1-p=1-01=08

Probability that exactly 2 of the chosen items are defective

= ""C,pFiaF
= 10C (0.1 (0.9)F =0.1937

Q.64 A coin is tossed 4 times. What is the probability of gatting haads exactly 3 imes?

(a) 14 (b) 8
c) 12 (d) 34
[ME, GATE-2008, 1 mark]
Solution: (&) _ .
Binarmial distribution is used, since this problam invelves coins.

p = pH)=05
Probability of getting head exactly 3 tmes s
p{X=3) = 4C,(0.5) 0.5) =14
Q.85 If three coins are tossed simultaneously, the probabiity of gatting at least one head 15
ib) 38

(a) 1/8
(c) 12 (d) 718
[ME, GATE-2009, 1 mark]
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Solution: (d)
Binomial gigtripution 13 used Since (his prodlem invoives cong
e n=243
= pHl= 12
x =
Mo pixz1 = 1-pix=0)
Wi, 1Y
= 1-36,(3) (1-3)
T
= 1- 1 -
B B

Q.66 An unbiased coin i3 tossed five times The outcome of each toss is either a head or a tajl, The

probability of gethng al least one head 15

1 1
ia = {b) o
16 31
(e > (ol 32
Solution: (d)
pixz1) = 1-p{x=0)

s faf(-4-

[ME, GATE-2011, 2 mark]

13

3z 32

Q.67 Consider an unbiased cubic dhce with opposite faces coloured identicalty and each face coloured
red, blue or green such thal each colour appears only two times on the dice. If the dice & thrown
thrice, the probability of oblaining red colour on top tace of the dice at least twice is

[ME, GATE-2014 : 2 Marks, Sat-2]

Solution : (0.25 to 0.27)

f— - m gy = e

x R B G
2 2 2
i B O
n=3 x : red colour
P = plRed)=2
2 4
=1-p=1-—=—
gq=1-p il
Prob. of getting red colour on top face atleas! twice is
=|:I[IIE1||+|:|{1=3]

= rq:?pi q™? + "C, p*g™?

ol (1) sl (1 -oatn

48+B 5B

516 21 0258
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.68 The prodability of cotainng at least two S in hronaiig & Fa R4 mea 8
(a) 2o 149
"1'?:! {b) 144
1
™ By 125
[ME, GATE-2015 : 2 Marks, Set-3]
golution: (B)
Lﬂt .F'bl.‘i 1.hﬁ Prﬂhﬂblhl}-‘ lh‘ﬂ[ 5,'“: ﬁccura ana 13." di‘:E_
1
P= 5
-
=%

Lel X, be the number of times "six’ ocours,

Prebability of obtaining al least two 'six' in throwing a fair dice 4 tmes is
1-1P{X=0)+ AX=1)]

1-{*C, g «C, p'q)

5Y' 1 (5Y {125} 19
1JI{’éJ +lhﬁ“[§] ” "17aa 144
.89 A fair coin is tossed independently four limes. The probability of the event ‘the number of

times heads show up is mona than the number of times tails show up® is
1

n

1
(a) 16 L 5
1 5
€ 3 T [EC, GATE-2010, 2 marks]
Salution: (d)

Coin is iossed 4 times.
p{number of heads > number of lails)
= pldH & OT or 3H & IT)
= p(Exactly 4 Heads) + p{Exactly 3 Heads)

Y r-3) aelaf (-2 - e
"*":4[5) 1=3) %G1z z) "% T 16

Q.70 It a fair coin is tossed four firres. What s the probability that two heads and two tails will

result?

[a) 38 o) 1/2

o) 5@ {d) 34 [CS, GATE-2004, 1 mark]
Solution: (a _

Theinl:::nditir:rn getiing 2 heads and 2 tails is same as getling exaclly 2 heads out of 4 losses.

Given p=P{H) = 12

an:ll'y%rug the formula for binomial digtribution, we get,

pré 1Y AC. 8
1 4 - y
POX = 2) = *C,(1/2F [1—5] = EE[ETWE}Z = ?"' B

i
o | La
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Q.71 Two n bit binary strings, S, and S, are chosen randomiy with uniform probabilty. The Probabdy,
that the Hamming distance between these strings (1he number of bil poslions where e ey
strings differ) is equal 1o d is

(a) "Cy2" (B) "Gy
(c) d2" (d) 129
[CS. GATE-2004, 2 marks)
Solution: (a)

IF hamming distance between two n il strings is d, we are asking Ihal d oul of n tnals 1o pe
success (success here means thal the bils are different). So this is a binomial distribution wik
n Irials and d successes and probability of success

p = 2= |2
(Since out of the 4 passibilities (0, 0), {0, 1), (1,00, {1, 1)] only wo of then (D, 1)and (1. 0) are success)
G
So, piX=d) = nC (122 (1f2y?= ”E,“

Correcl choice is therelore ().

Q.72 For each element in a set of size 2n, an unbiased com is tossed. All the 2n coin 1ossad are
mdependent. An element is chosen if the comesponding com oss ware head. The probakbility
that exactly n elements are chosan is

o) [i"] / s (o) ﬁ]/a"
(©) }/['T] @ 5

Solution: (a)
The probability that exactly n elements are chosen
The probabdity of getting n heads out of 2n (osses
2nG_ W2y (1/2pn-n (Binomial formuta)
2 C, (2y ey
Eﬂcn _ .E‘n,c"| ~ E‘I'[:n
g a2y g0

Q.73 The prabability that a thermistor randomly picked up from a produclion unitis gefective is 0.1
The probability that out of 10 thermisiors randomly picked up, 3 are defective is

[CS, GATE-2008, 2 marks]

(a) 0.0m (b) 0.057
(c) 0.107 (d) 0.3
[IN, GATE-2015 : 2 Marks)]
Solution: (b}

Probability = '%C, (0.1 (0.9Y = 0.057

Q.74 The probabylity that a screw manufactured by a company Is defective is 0.1. The company
sells screws m packe.s containing 5 screws and gives a guarantae of replacement f one of
MOre SCrews in ﬂ'IIE packet are found to be defeclive The probability that a packet would have
lo be replacadis___.

[ME, 2016 : 2 Marks, Set-2]

JuaAaliticu lJ_y waliliouval il icl
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B 5. P=01.G=09
¥ - no of delectives

AXz1)= 1- AX=0)=1-5 (0.1)°0.0)5 = 1 - (0°8) = 0.4085

3.3 Hypergeometric Distribution

|| the probability changes from trial to trial, one of the assumptions of binomial distribution gels
olated and hence binomial distribution cannct be used. In such lases hypergeomatric distribution
« used. This is particularly used is cases of sampling without replacemant from a finite population.

53

ILLUSTRATIVE EXAMPLES

10
Example:
There are 10 markers on a table, of which 6 are defective and 4 are nol

dallective. If 3 ara randomiy taken from above lot, what is tha proboability " i

that exactly 1 of markers is defectiva ? 3
Solution: _ /’\\

Tha above problem is tackled by hypergeomalric distribution as follows. T mh

D is defactive and MD s non dalactive,

piX = 1) = %ﬁ =03

Tha above problem can be generalised into a distribution if we make X as the number of
defective markers.

X can now lake the values 0, 1, 2or 3.
_yy o BCyxAC
=N = =N
This is thea hypergaometric distribution for above problam.
[rom above formula, we can calculata the following:
6O x40
=1} =
BCy x4C5  BC, x 4C,
= = 1 =
pixz1) = plx=0)+ pix=1) 10C; g e

plxz1) = 1-plx=0)=1- Eﬁﬂ-]

The hypergeometric gistribution can be writlen is a more general way as follows

' Consider N objects of which r are of type 1 and N-r are of type 2.
from thee n objects are drawn without replacement. What is the probability that x objects drawn
are of typa 17

| The diagram for above problemis

' N
| rc'.l! * H.-rd.':‘-;l‘ﬂ--m:
ﬂﬂ{ =%) = M':n N
AL r f
This is the general farmula for hypergeometnc distribution.
The expected value of this distribution is given by, !
(L VAN
E{“} = N [ M] b b3

b
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ILLUSTRATIVE EXAMPLES FROM GATE

Q.75 There are 25 calculators ina box, Two of them are defective. Suppose 5 calculators ane ran
picked lor inspection {|.e., each has the same chance of being selected), what is the probabily
that only one of the defective calculators will be included in the inspection?

1 1
(&) -E_ ) 3
?
(@] % @ g [CE. GATE-2006, 2 marks)
Solution: (b)

Since population is finite, hypergeometric distribution is applicabla
25 Cadculators
2Defective | 23 Non-defective
8 Calculators
1 Dedactive 4 Mon-defoctive

20, x23C,

p{1 defective in 5 calculatars) =
250,

A
g

Q.76 A box contains 5 black and 5 red balls. Two balls are randomily picked one atter another fram
the box, without replacement, The probability for both balls being red Is

1
@ 35 ®) 3
19 e
© 35 @ 3
[ME, GATE-2003, 2 marks]
Solution: (d)

Probability of drawing two red balls
= pifirst is red) x p(second is red given that first is red)

Alernatively this problem can be done as hypergeometric distribution, since it is sampling
without replacement from finite population.

10
From above diagram, p(X=2) = mﬂ- /1\
o 5B - AR
- Sx4 /A\

@wina

10x8 oe 2R

AL S A SRR A S LA 4
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From a pack of regular playing cards, two cards are drawn at random. Whet is the probability

Q77 | st both cards will be Kings, i frst card in NOT replaced?
1 1
® 3 ®) =
L 1
T 9 =
[ME, GATE-2004, 2 marks]
mmlcﬂf [ﬂ] ~
problems can ba solved by hypergeometric distribution as follows: ax ¥ ABMK
piX=2) = 4C; x 4BCy 2

(.78 A box contains 20 defective ilems and B0 non-delective items. If two ltems are selected ai
random without replacement, what will be the probability that both items are delective?

1
@ g ) 5
20 19
) o5 ) 55 [ME, GATE-2008, 1 mark]
Solution: {d) 100
Problem can be solved by hypergeometric distribution /I\.
200 B0 MDY
k=g = Tp Rl | 8 -
- 100C, 495

20 OND

£.79 A box conlains 4 red balls and 6 black balls. Three balls are selected randomiy from the box
ane after anaother, without replacement, The probability that the selected sel contains one rad
ball and two black balls is

@ 120 (b) 112
[e) 310 id)y 112
[ME, GATE-2012, 2 marks]
10
Solution: (d) sh | e
The problem can be representad by the fallowing diagram.
4C, x8C; B0 1
pliRand 2B) = 'EEN:-H -12.|:|._:_) }f?\\

iR 2B

Q.80 The security system at an IT office s eomposed of 10 computers of which exactly four are
working. To check whether the system is functional, the officials inspect four of the computers
pickad at randam (without replacement). The sysiem is deemed lunctional if at least three of
the four computers inspected are working. Lat the probability that the system s deemed

tunctional be dencted by p. Then 100p = _____
[CS, GATE-2014 : 1 Mark, Set-2]
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Solution: (11.80)
The tree diagram for the problem is shown below:

is im B
i Sty P}
Racuired probakdity = —C%—-"c g ﬁr':ﬂ & AW
y

\\n_\ia
[=2]
-

A ‘_ 1 2B
= mn T min - 210 T 1N
NG A
== i00p= 1190

5.3.3.4 Geometric Distribution

Consider repealad trals of a Bernoulli expenment € wilh probabiiity P of success and g =1 - ot
failura. Let x denate the number of limes € must be repeated until finally cblaining a success Tha

distribution of random variable x is given as follows:

k|1 2 3 4 5
Plk)|P oP &P P q'P

The axpenment & will be repeated k limes only in the casa that thare is a sequence of k - 1 falures
followad by a success,

Plk) =P{x - k) =" 'P
The geometric distribution is charactenzed by a single parameter P

Points to Remember:
Let x be & geomatric random variable with distribution GEQ(P) Then

1. E{.w::l-r;

o 3
Fl-?
3. Cumulative distribution F{k)=-1-g"

2 I'lrﬂl'{:lf’::

4 P(x>r)=d

Geomelric distribution possesses “no-memory” of “lack of mamory” property which can be stated as
Px>a+r|x>a)=Px=r)

1. Supposa the probabiity thal leam A wins each game in a lournament i1s 60 percent. A plays unbl
it losas.
fa) Find the sxpected number E of games that A plays
(b} Find the probability P that A plays in at least 4 gamas
{c) Find the probability P that A wing the lournament if the towrnament has 64 teams, (Thus, 2
taam winning & times wins the tournament).

Sol. 1
This is & geometric distribution with P = 0.4 and q = 0.6 (A plays until A loses)
1 |
== ——=g
() Since E(x)=5 = 53 =25

Scanned by CamScanner
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o) The ordy way A plays al least 4 games is i A
p=Px>3)=0"= (06 = 0216 = 21,89,
¢) Hare A miust win all 8 games;

wing tha first 3 gamas. Thus.

P = (06
= [0M4E7
= 4 67%

5.33.5 poisson Distribution

A randnn] varnable X, Tﬂ'ﬂﬂg o one of tha valyas a, 1 .2 .. 15 sald to ba a Polsson randar varable
with parametar Al forsomed = 0,

i &

Pix=% =

For Poisson distribution:
Mean = E(x)=1
Variance = Vix)=A
Tharefore, axpected value and variance of a Poisson random variable are both agqual (o its paramater A
Here A is average number of occurrences of event in an obsaervation pariod Al So, A = x Atwhere a
i no of pccurrences of event per unit time.

ILLUSTRATIVE EXAMPLES

Exampla: 1 |
A certain airport receives on an avarage of 4 aircrafts per hour. What is the probability that no
aircraft lands in a particular 2 hr period.

Solution:
Given aquation, o = rateof occurrence of event per unit time = 4hr
% = avg. noof occurrences of event In specified observation panca
= At
In this case o = 4/hrand At =2h
2 S50 h=4d4x2=8

Hnu.rm wish that no alreraft should tand for 2 hrs. l.e. x =0
E_-Jl.lfr _E-a'ﬂﬂﬂ- ;
Pix = 0) = ol o ol =@’
Frequently. Poisson distripution ig usad toapprovimale binomial distrioution when n s very large &
pisvaryar:rnjl. Notice that direct computation of nC,p* (1- p)" " may hemnﬁmuﬂ or impossible
when n is very large & p s very amnall. Hence, wa resort 1o a Poisson approximation with A = np.

Example: 2
A certain company sells rac
from this company what |s the probabiity of 2 of tham
Solutlon:

tors which fail at a rate of 1 out of 1000. if 800 tractors are purchased
failing within first yoar,

11
A=np=500xJonn = 5

V22
Ft}‘: & E'_i = E_-—I;I-—]z‘ = L.07ER2
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ILLUSTRATIVE EXAMPLES FROM GATE

Q.81 Suppose p is the number of cars per minute passng through a cenain rad unction et :
5 PM, and p has Poisson distrbution with mean 3. What is the probalilty of absarying b
than 3 cars during any given minute in this nterval?

fa) Bi2e’) fh) 9N2e)
fc) 1742e%) fd) 26(2e%)  [CS, GATE-2013, 1 Mark]
Solution: (c)

Poigson lormula lor (P = x) given as

=% F

A

x!
2. mean of Poisson distribution = 3 (given)
Probability of absenang fewer than 3 cars.
(P=0}+(P=1)+(P=2)

wdafli =¥ =f _-JaF
El+a 1+al=1?

o 1l 21 2g"
{c) is correct oplion,

Q.82 Arraffic office imposes on an average 5 nurmber of panalties daily on traffic violators. Assume
that the nurrber of penalties on diferant days is indepandent and follows & Poisson distribution,
The probability that there will be less than 4 penaities ina day |3
[CE. GATE-2014 : 2 Marks, Set-1]
Solution :

Mean A=23

Pix < 4) = pix = 0) + plx = 1) + plr =2) + plx = 3)

Al Ee “5g2 =5eld
g5 @8 p™5° g5
I I

= E'E['|+5-I-EE+E =a"'[uﬂ
2 ] 3

] = 0.265

0.83 The number of accidents occurring in a plant In a manth follows Poisson distribution with mean
as 5.2. The probability of occurrence of less than 2 accidents in tha plant during & randomby

gsalatted month is
{a) 0.029 () 0.034
{c) D.039 (d) 0.044
[ME, GATE-2014 : 2 Marks, Sat-2]
Solution : (b)
=W F
Pl = =2

XL

As Améan) =52

Pix < 2) = P(0) + P(1) = 5—5.2[%_‘_ 5.2*]
1

6.2
Plr<2) = —57=00342
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Q.84 The seco d moment of a Poisson-distributad random variable ig 2. Tha meaan of the random
variable i
[EC, 2016 ; 1 Mark, Set-1]
golution:

In Poizson distnbution,
Mean = First moment = 3,
seCond moment = A2 4 3,

Given that second moment is 2
; Aed =2
Arra=-2=0
(A+2¥h-1) =0
A=1

.85 Consider a Poisson distribution for the tossing of a biased coin. The mean for this distribution
is . The standard deviation for this distribution is given by

(a) () 12
1
cl n () E [ME, 2018 : 1 Marks, Sat-1]
Solution: (a)

In poisson distribution mean = Variance
Given thalt mean = Vanance = m

Standard deviation = Varance = Ju

Continuous Distributions:

Genaral Confinuous Distribution

Uiniform Distribution

Exponential Distribution

Mormal Distribution

Standard Mormal Distribution

53.3.6 General Continuous Distribution

Let X be a continuous random variable, A continuous distribution of X can be defined by a probability
density function f{x) which is such a function such thal

ol ol - i

plessX <o) = J1{x}dxr1
The expectad valus of x is given by -

b = E(x) = jxr{x}dx
ie. Vix) = EG2) - [E)] = Trﬂr{x}dxu[:i X f{x}dxlz
o = W

Scanned by CamScanner
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Th sative probability function (sometimes also called as probability distribution function), i
B CLETIL

given by Fix), where :
Fx) = piX<x) = [ fxdx
Note: From distribution funciion we can get probability dansity franction by fermula below:

dF
1I:Hf] - a

ILLUSTRATIVE EXAMPLES F ROM GATE

i dom variable X is
(1,86 If probability density funclion of & ran
() = Elor-1=xs1, and

= () for any other value of x

1 1Y,
then, the percentage probability P["ﬁ SXS B ] is

0.247 (b) 247
::: 24.7 (d) 247
- [CE, GATE-2008, 2 marks)
Solution: (b)
fix) = ¥ =135x=1
alven N A

1

! 1 AT ;
T, T | .

1
E

15'1-:5—1
p['ﬁ 3

waf =

2
The probability expressed in percertage. p = g3 * 100 = 2. 468% = 2.47%

Q.87 Find the value of A such that funclion f{x} is valid probability density function
f{x) =X (x-1)(2-x)for 1sxs2

=0 otherwisa
[CE, GATE-2013, 2 Mark]

Solution:
Iff:{}d: sl
2
) = |l{-x +3x-2) 15:452}
o otherwise
s
jl{-xz+3:—2]d:ﬂ = 1
i
R
- J‘-["-E"i'a?—?k]? = 1
g 1} 3 )
-+ (3-3)+36-1-22-1] =

!
ovalnicu vy walrrovdlririci



4. R T TR

MADE EASY Probability and Statistics | 425

_.-I'.'..-.-'--_-_
r
= l[‘i"‘%—?] = 1
AR
= .l. = %:E
A= B
(.88 The probability density function of evaporation E on any day during a year in a watershed is
ghven by
1
(g« |5 O SESSEmmiday
0 otherwise

The probabdity that E fes in between 2 and 4 mmiday in a day in the watershed is (in decimal}

e —

[CE, GATE-2014 : 1 Mark, Set-1]
Solution ©

1
HE) = {5 0= E = mmiday
Otherwise

= o

1 % 1 1 2
Pl2<E<d)= J.r[ETIIJ'E EIEHE-EIEE & Erl.ﬂ,_.g}.g = 0.4
2 )

Q.88 The probability density function of a random variable, x is

fx) = "E'H"IE] lor0sxs2

=0
Tha mean, p_of the random variable Is

[CE, GATE-2015 : 2 Marks, Set-1]

Solution :
i{d-rgl,ﬂiriﬂ
wals 0 . Otherwise
z
W= fnxf{:}dx
2 x 2 2_£
- Mean(p,) = j'nxﬂd-:‘}u': = In[: 4 ]{I'_r
3 S B 32 18
‘ - I—-—E s we = 1,086

o ]
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ndom variable wilh probability gensity tunction

i finuOus ra
R o (1) = 1+ior- 1510 |

= 1-1 lorOstsl |
The standard devialion apf the random variable 1s 1 |
: ® F
(@) T3
iy () 1
{'::l E g
[ME, GATE-2006, 2 marks]
Solution: (b) 1 ; |
_EM = T = [1-00edt = [+ tdt+ [t -t
Mean w, = E(t) jmq fi{t) - ct :F. L ﬂf

“ 37’ 1 1
g ¢ f._t_ _._I:_L_i].pl:__..] !
[E*'E}-.'* C W v Y i |

R |

= _-|:E+E]-U |
Varlance = E(t?)- [E(t)])? |
= ]t oo [EWE = [ fiat - (0P |

- il

1
= [P imat = [e o + [1 -t

. it 1

0 1 S f ] |
= _}'1{13+|5]-d1+_!|2{1-t]dt=[IE+'I[:1+[E_1-]H |

1 1
— i —
12 1

=
2 6 f |
1
Standard deviation = Jvariance = '._J'E-

Qe LatHand‘-rmmmawﬂMrmﬁmmmﬁmmthmﬂmmeremhﬂmmpmmm
(E), variance (Var) and cavariance (Cov) given below is FALSE?

(a) E(XY)=E(X)E(Y) (b) Cov(X,¥)=0
() Var (X + Y) = Var (X) + Var (¥) (d) E(X2'Y2)=(E X))?(E(Y)P
[ME, GATE-2007, 2 marks] |
Solution: (d) |
{a) is true, (D) IS rue, (c) is lrue.
(d) is false.
since, E(X?Y?) = E(X2)E[YY)
But since X is not independant of X, |
ERE) = (EX)P |
E(Y?) = EQR)E(Y?) |
* [ECOR [E(Y)P |
]
|

AL LTIV ”] ALTLINUALTILTV]
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(.92 A coniinuous random variable X has a probablity density function K{x) = e, 0 < x < = Than
' pix> 1] i%
() 0368 (b) 0.5
(c) 0832 () 1.0
[EE, GATE-2013, 1 Mark]
golution (a)

P Tf{x:ldx EIE"ﬂH = —e'“[' =-(g" -a)=g" =0.368
1 1

.93 Let ¥ be a random variable with probability density function

0.2 forlxl <1
{x) =401, for i<« < 4
0, otharwise

The probability {05 < X < 5} s ,
[EE, GATE-2014 : 2 Marks, Set-2]

Solution

5
Probability (0.5 <n<8§) = [ f(x)dx
0.5
1 i 5
= [02dx+[0.1dx+ [0dx
0.5 1 q

= 0.2[1-0.5] + 0.1[4-1] + 0[5 - 4]
=02x05+01x3=01+03=04
Q.84 A random variable X has probabikty density function fx) as given balow
g+bxr for0=sx=1
flx)=
i} othenwyise

i the expected value E[X] = 2/3, then Pr{X < 0.5} is i
[EE, GATE-2015 : 1 Mark, Set-1]

Solution: (0.25)

i a+bx forD<x<1
fix) 0 otherwisa

Now givan E[X) = 2/3

! 2
= g::ffx}ﬂx =2
i 2
= = j;{a+m]dx=3
1]
:z]‘ [15]1 9
g a —| +b|l—| = =
[2 . 3 5 3
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1), (1) =2
i '] i b[ 3] 3
= a+2b=4 A0
Now J!f[x}l:f.r =1 (Total probability is always aqual o 1)
0 | 1
= =j:a+b::dx=[ar+—5—] =]
o 0
b
=% a+ '5 = 1
= 2a+b=2 i)
Now solving (i) and (i), we get
a=0 b=2
#r forQex<]
oy |-EI otherwise
ye 1
MNow wea neaed {Ex dx = 4—
Q.95 A continuous random variable X has a probabillity density f{x) =™, 0 <X < ea. Then P[X = 1] is
a) 0.368 (B) 0.5
i{'.; 0632 (d) 1.0 [IM, GATE-2013 : 1 mark]
Solution: (a)

PF= T“H}m=‘iﬂ_"d’]¢ = ‘B_"I:. =g"'=0.368
1 1

.86 A probabllity density unction s af the form plx) = Kealrl K E [—oo, oa)

Tha valua of K s
(a) 0.5 {b) 1
(¢) 06a {d) « [EC, GATE-2006, 1 mark]
Solution: (c)
[plxjdx = 1

THE ok = 1
ﬂ - L]
| Ke™dx+ [Ka™ - 4
- 0

= Sl -

-
K K
= —+— = 1
X
M =a
= K = 05«
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0.87 A program consisls of two modules exaculed sequentially, Let 1, (1) and 1, (1) respectively
denote the probability density functions of tima laken to execule |r5.g1-..-.nmn{]ulm Tha probability
dansity function of the overall time taken 10 execule the program is given by

(a) 1, {th + 1, (1) (=)} Jl'fttr:}l;{r}d:

I
i) !'ﬁ'[“]‘:'“ K)dx () max (1, (1), 1, (D)

[C8, GATE-2003, 2 marks]
Solution: (c)
Lat the time taken for first and second modules be reprasented by x and y and total time = t
o b= x + vy i85 arandom variabla

MNow the joint density function,
o = [yl = ['fet-xiax = [0 (- xd

which is also called as convolution of f, and f,. abbraviated as 1, * f,.
Correct answer is therefora, chowce ().

3.98 Let f{x) ba the continuous probability dansity function of a random variable X. The probability
thaia = X <h. is

(8) 1(o-a) (b} fib) - Ka)
=] b
@ [Hx (d) [t
[CS, GATE-2005, 1 mark]
Solution: (c)

If i{x) iz the continuous probability density function of a random variable X than,

5]
pla<xsb) = plasxsb)= |f(x)x
<]

0.99 A probability density function on the interval [a, 1] is given by 1/ and cutside this intarval the
value of the function is zero. Tha value of a is .
[CS, 2016 : 1 Mark, Set-1]

Solution:
1
Given, Kx) = .I_E asx=<]
= [0 alsewhers
i
S0 If{_rj = 1
g
i
.I
= f;f =1
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1]
LiY]

— a= = =05

5.3.3.7 Uniform Distribution
In general we say that X is a uniform random variable on the interval (a, b) if its probability
dansity function is given by:

1 :
— e K
fix) = ¢f=-mo P
a otharwise
Since f{x) is a constant, all values of x between o and B are equally likely (uniform).

Graphical Representation:
1<}

—h

f=-a
i : E
= B
For Discrate Uniform Distribution:
rl,lh.ﬂj'l = E[K] = E%E
o,
Variance = VI(X)= {ﬂl;}'
ILLUSTRATIVE EXAMPLES
Example:
If X Is uniformily distributed over (0, 10), calculate the probability that
(@) X=<3
(b) X=86
[2) 3 =X <8
Solution:
1 1
l | = ——
) 10-0 10
PIX <3| = j;;ﬁm - 1_?].
PX> 6] = I;ﬂ%dx . %
PReXetl = [*1a 1
[3<X <8l : md: =3
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..-""""._._._
ILLUSTRATIVE EXAMPLES EROM GATE
tandard daviati
0.100 e 1 Sonsl B unifonmly distributad random variable between 0 and 1is

@ fz ) —=
: 2

e} Az @ = [ME, GATE-2009, 2 marks]

galution: (a)
_(B-af \({t—mf i
= 12 2 * 3

q.101 If Pand Q are two random events, then the foliowing i
{a) Independence of P and Q implies that Wﬂbﬂhllitﬁ;—:ug} -
(b) Probability (P L Q)2 Probabillty (P) + Probability {Q)
(c) IfPand Q are mutually exclusive, then thay mus! be independent
(d) Probability (P ~ Q) = Probability (P} [EE, GATE-2005, 1 mark]
Solution: (d) ' |
(a) Isfalse since if F & Q are indepandent
pAPAL) = priP)* pr{(Q)

which need not be zero.
(b) isfalse since  priFu) = prP) + pr(Q) - pe(P ~ Q)

prifwQ) s priP)+ pr{Q)
(¢} isfalse since independenca and mutually sxclusive are unrelatad properfies

(d} is true
snce PO P
= nPFnQ) = nlF)
+ bath sides by ni(3) we getl,
PnQ) _ Pl
n(3) n(S)
= priP~ Q) = pr(P)

0.102 Twoindependent random variables X and Y are uniformby distributed in the interval [-1, 1]. The
probability that max [X, Y] is less than 1/2 is

(a) 34 (b} 916
(ch 1/4 (d) 273 [EE, GATE-2012, 1 mark]
Salution: (b)
-1£x £ 1and -1 <y < 1 is the entire rectangle. y
(=1. 1) 11 (1,1}

A
The region in which maximum of {x, y] is less than 5 8
shown helow as shaded reglon inside this rectangle.
1 Area of shaded region
p[m ™ ¥1<3) = Area of entire rectangie

3.3
il ¥, g

Sox2 16
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ey,

Q.103 A point is randomly selected with uniform probability in the X-Y. plane within th rectangle wi,
corners at (0. 0), (1, 0). (1, 2)and (0, 2). If p is the length of the position vecior of the pain, the
expected value of p? is

213 {b) 1
:2; 413 (d) 53 [CS, GATE-2004, 2 marks)
Solution: (d)
Length of position vector of point = p = /x* +y* i 1
=ty : i1, 2)
Eip?) = EDE +y3) = E(ef) + Ey¥) @2 ol
hluu.-.rxandya.munilunhl-_.-dimﬂbmedﬂﬁxﬁ1andﬂ£y£2 % '

=

0, {1, o)

1
Probabiity density function of x = 37 = 1

1
Probability density function of y = I 1/2

1 1 e
E(x?) = Fp{x}dx - R [_*.‘E_l =3

o
2 7
¥ 2.1/2. E_ 4
E(y*) = ai?znw}ﬂr - ._!\" Ya-dy . [%L .5 =y
1.4_5
E(p?) = ED®) +Elyf) = 3+3=3

1,104 Two random variables X and Y are distributed according o

_Jis+y) Dsx=1 D=syst
f"-"“'”‘{ 0 otherwise
The probability P{X + Y=< 1)is [EC, 2016 : 2 Marks, Sat-2]
Solutlon:
1 -3
Px+rsty= [ [ fylxnyidedy
Jrﬂf-ﬂ
1 i=mx 1 gyl-x
- j Jix-i-].-r}dxd].-' = j[ry+;"r—]
rul p=i a=0 2 0
1 1 3y
u—xf‘] [t x"] [r r]
= x{l=x)+ dx = ——=ldx _|z-=
;-!ﬂ[ 2 J.[ﬂ 2 2 = & il
T 1 1
"F 6 3

Q.105 Probabdity density function of a random variabla X is given below
0.26 f12x25
Rx) = [u olherwise
AXx<4)
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(& -
aj = ,
‘1 -
| ®) 2
el 3 ]
(d) a [CE. 2018 : 2 Marks, Sal-1]

Solution: (a)
i = ¢ . I
Fiv = 4) I_ Haxldy = I__[U}-l:‘.l.-'. 'I:tﬂ-gﬂ}d-l*j;m}ﬂ'x _ d-l'[.'l I: ) %[d 9 "i
53.3.7 Exponential Distribution

far some A, = 0 by

el = PiX<a) - I:’“E'k‘“*-'[‘“'kl; =1-gM™azp
For Exponential Distribution:
Mean = E[X]= 1/
Variance = wx) = 12
ILLUSTRATIVE EXAMPLES

Example:
Suppose thal the iength of a phone call in minuies is an axponential random variable wilk

parametar . = iTE [ gsomeone arrives rmmedialely ahead of you at a public telephone booth,
find tha probability that yvou will have to wait,
(@) More than 10 minutes
(b} Between 10and 20 minutes,
Selution:

Letting X denote the length of the call made by the person in the booth, we have Ihat the
desred probabilities are:

{a) PIX>10) = 1-P(x < 10)
= 1=-F(10) =1~ (1-gh=m
= 8 ml:ﬂ"ﬂﬂ_aﬁﬂ

{t) P10 < X <20] = F20)-F(10)

(-4 -(1_a ™A g - g2-0233
ILLUSTRATIVE EXAMPLES FROM GATE
Q.108 Let the probatility density function of a random variable , X be given as:

) = e ulx)+ sl

where ulx) is the unit step function. Then the value of ‘a' and Prob 1X= 0, respectively, are

!!&nugﬂ" Uy CdiitSCarnmet
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1
ql_
o2} 4
1 ) 4= [EE. 2016 : 2 Marks, Set.2)
(c) E'E &
Solution: (&)
IaEﬁ-u X ﬂ
rri"ﬂ= ie-h =0
2
T.I'. {x) = 1
[&Eﬂ'd“.l;‘g'e gy = 1
:? A1
aa-l-: E
a .3 | =1
E—+E =
4 B
a==2

i} E_l*.l: 1
Plx<0) = JEE'*.:I':= = =3

5.3.3.8 Normal Distribution _ _ _
W say that X is a nermal random variable, or simply that X is normally distributed, with paramelers
u and a2, if the probability density function is given by:
fr-pf
1| =

flx) = mﬂ = L —pa X €00
The density function is a bell-shaped curve that is symmetric about p.
For Mormal Distribution:
Mean = EQX)=p
Variance = V{X)=0®

5.3.3.8.1 Standard Normal Distribution |
Sinca the for N (. o) varies with p & o & the integral can only be evalualed numarically, it &

more reasonabla to reduce this distribution to another distribution called Standard normal distribution
N (0, 1) for which, the shape & hence the integral values remain constant,
Since all N (i, @) problems can be reduced to N(D, 1) problems, we need only to consult a standard
tabla giving calculations of area under N (0, 1) from O to any value of z.
The conversion from N (i, o2) to N{D, 1) is effected by the following transformation,

X-p

D | —
L]

Where Z is called standard normal variate.
For Standard Normal distribution:
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wa?
f"'ﬂfﬂ_ Mean = E(X)=0

Variance = VX =1

Hance 1he standard normal distribution is slso referred 1o as the N(J, 1) distribution

ILLUSTRATIVE EXAMPLES FROM GATE

A class of first year B, Tech, students is composed of four batches A, B, C and D, aach
consisting of 30 students. It is found that the sessional marks of students in Engineering
prawng in batch C have amean of 8.6 and slandard deviation of 2.3. The mean and standard
deviation af the marks lof the entire class are 5.5 and 4.2, respectively. |t is decided by thie
course instructor 1o normalize the marks of the students of all balches to have the same mean
and standard deviation as thal of the entire class. Due to this, the marks of a student in batch
r arechanged fromB.5 1o

[a) B0 (b 7.0
ey 80 (d] 8.0 [CE, GATE-2006, 2 marks]
sotion: (d)

Lel tha maan and standard dewviation of the students of batch C be u, and o, respectively, and
the mean and slandard deviation of entire class of first year studenis be p and o respectively,

how givan, B = 66
g, =23
and =55
o =42
inorder to normalse baich C toentire class, the normalised score (2 scores) must be equalad.
3— ¥ -85
snce L-n o 42
.=, BS5=-G6
o= 6. 2.3
Equating these two and solving. we get
Bo-66 x=5.5
23~ 42
¥ = BOE~8.0

=

0108 The standard narmal cumulative probability function {probability from —ee o % ) can be

approdimated as
i

= S expl1.7286 %, [ X, ) o
where x_ = standard normal deviake. If mean and standard deviation of annual precipitation are
102 em and 27 cm respectively, the probability that the annual precipitation will be batween

80 cm and 102 cm is

(B) 50.0%
E; :i;: (d) 167% [CE, GATE-2008, 2 marks]
Solution: (b)
Hers p o= 102cm; g=27cm

uucd mTrcu lJ_y waliliouval i ici

90 - 102 “32-‘“9]= 0445x,20
p{ﬂﬂgxﬂmE}:rJ[ 7SS g Pi=0.4452,20)

&

i

-~

L e

T e

n_f-
.
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_-_-_‘_|—
Thig mrod 15 shown Balow:
{1444
The shades area in above ligure 1S
1 e
given by F(O) - Fi-0.4d) = — oxpl0) 14 oxpl-1.7265 (-0 .44) (0.44)0.12)

- 05 - 03345 = 01655 =~ 16.55%
closes! answer s 16.7%

Q.100 The annual precipitation data ol a city s normally distributed wilh mean and standard devialion
as 1000 mm and 200 mm, respectively. The probahility that the annual preciptation will be

made than 1200 mm s

(a) = H0% () 50%
c) 76% (d) 100% [CE, GATE-2012, 1 mark]
Solution: (a)
The annual precipialion is normally disiributed with 4 = 1000 mm and g = 200 mm
1200 - 1000

p(x> 1200) = P{Z>— 55 = plz > 1)

Where z is Ihe standard normal variate.

In normal distribution

Mow, since pi-1 < 2 < 1) = 0.68

[= 68% of data s within ona slandard deviaion of rmean)

po<z<1) = ﬂ—'gﬂ=n_3a
So plz>1) = 05-034 =016 = 16%

Which is <50%
Sochoice (@) is cormect.

£.110 If [x] is a continuous, real valued random variable dalined over the interval (- o, 4 =) and its
occurrence is defined by the densily funclion given as:

-1 k<o
fx) = ﬁﬁa?[ b | where'a and 't are the statistical atributes of the random variable

- n-a
{x]. The value of the inlagral j_“_ma;l b Tm
(a) 1 {b) 05
(e) = (d) 2  [CE, GATE-2014 : 1 Mark, Set-2]
Solution : (b)
In normal distribution, the area under the normal curve from —e 1o the mean = 0.5
Hera, “a' is the mean. So, The value of the integral

w-al’

r :r_t—g;{ LI = lhe area undes the normal cmﬁimm—-tuih&mam:ﬂﬁ
=Jen-b
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WADE EASY Probability and i
'I'I'T Let X ba Eﬂﬂfmﬂl rancom varmble with mean 1 and variance 4, The prﬂbﬂlﬂillt}' le < 0} 15
- a) 05 (b) greater than zero and less than 0.5

, (c) greater than 0.5 and less than 1.0 () 1.0
| [ME, GATE-2013, 1 Mark]
|

gtion: ()
5d Hiare. o =4 = g=2

G = —
O

a

| which i the shaded area in the piciure and its
yalue is clearly betwean 0. and 0.5

. g.112 Anationalized bank has found that the daily balance available in fts savings accounts follows
| " pormal distribution with a mean of Rs. 500 and a stardard deviation of Rs. 50. The parcentage of
savings account holders, who mainiain an average daily balance more than Rs. 500 is

[ME, GATE-2014 : 1 Mark, Set-1]

i T (=)
va iF o
w _(r-uf

Emﬁ#lmﬂhﬁfﬂ T

| Soiubon . _

. Given X is normally distributed,

: GW'“=EM'““5W{“‘*5WJ*FJ[“@]W[:&%]W[::H]:D.&

| which is equal 1o 50%.

| The vakue of the integral | = L]:Eh-'ﬂ[—i]dx i5

! g.113 Ton ! 5

| fa) 1 (b) =

! lcl € (d) 2n [EC, GATE-2005, 2 marks]
| solution: (2)

|

We can put p and o as any thing:

Here, putting =0
o &
2 e 4
. [
| =
| F'Lﬁtiﬁg. —"E— 3 "Eﬂj
| = a= 2
} MNow puiting o = 2, In above equation, we get,
.
e B =1
I ijﬁ_u'
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don variable following normal distribution with mean +1 and varance 4. Let ¥ pe

Q114 LetXbeaaran
gan -1 and variance urknown,. I P{X <1} = P(Y 2 2} the

ancther normal variable with m
standard deviation of ¥ 3

(a) 3 (b) 2
tel J2 (d) 1
[CS. GATE-2008. 2 marks]
Solution: (a)

Given, iy =1,0,7=4=0,= 2

Also given, fy = -1 and o i5 Unknown
given, pix<-1) = p(¥Yza)
Converting inta standard normal variales,

=1, 2-p
feson) L o)

-1-1 E-(—ﬂ]
p{zi 2 ] g I:’[H o

plzs-1) = p[zzﬂ%] )

Mow since us know that in standard normal distribution,
plz £-1) = plz21) o (i1}
Comparing (i} and (i) we can say that
3
— =3
a 1= ﬁ‘,
Q.115 The area (in parcentage) under standard normal distribution curve of random variable Zwithin
[imits from -3 10 +3 I8

[ME, 2016 : 1 Mark, Sat-3]

Solution:
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Numerical Methods
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6.1 INTRODUCTION
Mathematical methods used (o solve equations or evaluate integrals or salve differential equations
can be classified broadly inta two types

1. Analytical Methods
2 Mumencal Mathods

6.1.1 Analytical Methods
Analytical methods an those which by an analysis of the eguaticn obtain & solution directly as a
rgadymade formulae in terms of say, the coefficients present in the equations.

Exampla: 1
Solve ax? + by + c analytically

: : bt b’ - dac
Andlytical aofution: - T

Example: 2
Evaluate IKE dx analytically

i
p———
|'..:|Hp
—

n
e
L

Laj g
s

n
] =4

7
Analytical solution: L x® dx

Example; 3
Solve the differantial eguation

dy 2y = 0 with initial condition y(0) = 3.

ds
Analytical solution: j’% = jde
= logy = 2
y = Go™
yi0) = 3
= [ — 3
al solution.

- y = 3g® is the required analylic
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6.1.2 Numerical Methods:

Those same problems could also b solved numarcally a5 '--'e- shall 5&{13 I 1hi;f, chaplar
In numarical solution, instead of directly wriing Lhe 9”?""'“" in terms “I EEmE'H ':‘”""l“ﬂ_ﬂ. WE perinm
slepwise calculations using some algorithms o numerical procedures (usually on a computer) ane
:::r: ::;::, ;:_I';fﬂ T,:fr::tza! mathods 5 that usually theso pmmdureﬁ_wr?-.rk :::nI -|3 mu.li:. wider rnge of
proolems compared to analyhical solutions wr_m:h work only on _a Im?;n:l c dﬁi ol probilems

For examgpla, there are no anahytical solutions E'-"BI|ElI|."F|E lor p!:ll'ynm'ltﬂlﬂ of degree 4 or mare. Whereas
numerical methods can be used to solve polynomial equations of any degree.

Also numerical solutions can be used on linear s well as nonlinear equations, whereas analylics|

il far nonlinear eguations.

i:ﬁtlﬁgiﬂmﬁg Eg::putms and hfgs compultational (number crunching) power, numerical methods
have largely raplaced analytical methods of solution and have Fm're-ndadliha poweer of mmhﬂmﬂ'l_mal
methods 1o salving & much wider class of practical probiems which ocour in simulation and modaling,
than it was possible before using analytical methods only. |

Although Mumerical Methods exist lo s0lve S0 many types of commonly {:ﬂ:::umr.u; mathermatical
problems, we shall focus on four probiems in particular in this book, where numerical methods are
successiully applied,

1. Solution of system of linear eguations

2 Solution of algebraic and transcendental equations in single variable

3. Ewvaluation of definita integrals

4. Solution of ordinary differential equations

The advantage of numerical methods is ils applicability to a wider class of mathematical problems,
a disadvantage of numerical methods 1s thal these methods introduce rrors in varying degrees info
the salution, thersby making them approximate. These erors however, can be controlled and contained
withirt sormie ordinary tolerance local.

6.1.3 Errorsin Numerical Methods

1. Round-off Error: It occurs due to imited storage space available inside computer for stonng
mantissa part of a fioating point number due to which these numbers are either chopped off or
rounded after so many significant digits.

2. Truncation Error: It occurs due to usage of fixed or limited number of 1erms of an infinite series
to approximale certain functions,

Example:

Taylor's and Mclaurin's Series expansions of functions like e, sinx, cosx ele,. with limited
number of terms of the infinite series,

Although errers are infroduced in Mumerical Methods, they can be controlied and hance aither raduced
to arbitrarily low values or managed to be within tolerabile limits.

Fn.r example, round-off erfors can be controlled by allocating larger storage space for manlissa by
using double float, instead of float for example.

Truncation emors can be controlled by davelopin
ara-uged.

Fl;:r Ef;?l‘l"lﬁﬂ. fruncation BF‘-“FH in Simpaon's rule of numerical integration is much |ess than trapezoidal
fTUE: r_ﬂmsm pmmam m. owing 1o the fact that Simpson's rule is developed by taking more terms of
aylo &s. The order of 8 Numerical Method is a way of quartifying the axtant of error, the higher

@ methods in which more terms of the Taylor's senes
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e order. lessaf the arrar. Some numencal mathoos Rvalve stanting the procedure by asguming trial
quiss values for [ne solution and then refining the answer succ assively to greater and gresier m@w
' each iteration. These types of numerical methods are called trial and arror methods o HEraIVE
mealhods.

For example, the Gauss-Saidel mathod for solving system of linear equations is a trial and ﬂr:ur
jjerative) method. Sois the bisection, regula-falsi, secant and Newlon-Raphson methods used for

oot findling (solving algebraic and transcendental equations of the form f{x) = 0).

quantifying Errors in Numerical Methods: There are several measures o quantity the errar which

nnumarical methods.

oCCUTS |
Emor = Exact Vaiue - Approximate Value
Absolute Emor = | Exact Value - Approximate Value |
- wimiake
Relative Ermor = Exact - Appro |
Exact |

Exact - Approximale e
Exact

Aealative Ermor %

62 NUMERICALSOLUTION OF SYSTEM OF LINEAR EQUATIONS
Consider the following m first degree equations consisting o N Urknowns X, X; .. X,

By Xq AR ¥ s e By R i+ By By S b,
33111+&ﬁ:-:?+--.... ...... + ol X+ _ 48 %, =0
;mla:, P T SR - B R URL +a, e =By
o¢ in matrix notation, we have
b
Aygdyge--n A X 1
aEIEEE ........ Ela., X w bﬂ

By Bz eoee B bnwn X -1 b o
B oS {0 abtain the values ol X, X5 .- X,
ndi ' of equalion wa mean Xy
solution of the above syslem i Sy
i f:rﬂ;l:ti::a aatisfy all the given aquations sirmultaneously. ThE.Ey*sta'ﬂ. : of aguaﬁmn u: n?;.l:n sl
;L:a'rdtﬂberrmmgmuus ifallby(i= 1. e m}vanisn.mmsmtnacalla Eas S
system, There are number of nathods to solve the above System of Linear Equations.
These are as follows:
1. Matrix Inversion Method
2 Cramers Aule o
' g
3. Crout's and Dolittle’s Method (Triangularisation Mathods)
4. Gauss-Elimination Method
5. Gauss-Jordan's Method
B. Gauss-Seidel lterative Method
Fil

Jacobi Itarative Method _ R
In this bosk, we shall tocus on Triangularisation, Gauss-Elimination

5-Seidel Methods only.
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6.2.1 Method of Factorisation or Triangularisation Method (Dolity s
Triangularisation Method)

This mathod is based on the fact that a square matix A can be factonsed into the foerm LU wharg L
is unit lower triangular and U is a upper triangutar, if all the principal minars of A are non singular; o
it is & standard result of linear algabra that such a factorisation, when it exists, is unique,
We consider, for delinitenass, the linear system

Bygky + 8%y + Byg¥y = By

oKy + Byg¥s + By0dy = D,

By Xy + Bgoin + 8q%y = by
Which can be writtan in the form
Led A= LU o (1)
(100
whera La [lyy10 111
b1 b 1
gy Uy U
and U= |0 Uy U o (i)
[0 0 Uy
(i) becomes LUX = B v (W)
If we sat L =¥ o i)
then (v) way be writien as LY = B o Wit}
which is equivalent lo the syslem y, = b,
for¥y # ¥z = By
Faify + Eag¥a + ¥y = By
and can be soclved for y,, y;, ¥y by the forward substitution. Once, ¥ is known, the systam
{vi) become
UjiKy + Uggly 4 Uggde = ¥,
Upska + Usphy = ¥
Ugsy = ¥y

which can be soived by backward substilution,
We shall now describe a scheme for computing the matrices L and U, and lllusirate the procadure
with a matrix of order 3. From the relation (ii). we obtain

1 0 Of [y Wiz Uyy 8y 8y 842
by 10 [0 Upup,| = 8zq Sz Hyy
by b2 1) [0 O uy 8y Ay A3y

Mulliplying the walrices on the left and equating the corresponding clamants of both sides we gel
Uy = By gy m Byg Uy = Byy

by, = By
a8
o L, = =&AL
21 U-|1
Lpyllyp + Ly = 8,
- Usg = Blgg —lgylyp
Egglig + Upy = By
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— _-_-_-_'_-—-—-—.___
= e = '&23—!21L;13
falyy = a,,
= ]
Uy
EEIU‘IE =5 1’;;'.@2: E'-!-E
= !33 E _I 1
Uzs
Lastly, Eai Uy + L33 Uy + =
= s - s

Uy = 85— Fu,, - Eyallon

», the variables are solved in the following

order Uy, Uz Uyg
then £y, Upg Uy

fasthy, I"31-"-"3.21'-';3;'_;|_
II.LUETHATWEEHAHFLES
Example:
Solve the eguations
2X+3y+2z = G
X4+ 2% +3z = B
Jx+y+ 22 = B
by the factorisation mathod.
Solution:
231
A=]1223
3 1 2]
10 0)fuy; Uz Lys 1]
b1 00 Upug| =123
e 1[0 O Uy 31 2]

chearly Uy
also Eaqldyy
-!E1Li1,2r + Ups

= T
faqUqg + Uy

from which we obtain Loy
'EJ-'I IIJI|'|

= !_,_,
331 Uy, + !3: Uss

= fas
Fyy Uy + f5p Ugy + Ugy

oy gy

!cannea By CamScanner
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1002 3 1
1 i 5
= =100 = =
It follows thial A > 3 5
1
E.'.-' 1 0 0 B
| &

B
-T1ﬂ 1
1 0 O
I ¥4 9
or as E1-‘.:11,-._."'5
3 44 ’
2

solving this system by forward substitution. we gel

B

T|=g',%+y?

|
= Vo m —
w=g

a
E'ﬁ ~Typ+¥; = By, =5
Hence the solution of the original systam is given by

a3 1 g
s " 3
0 = = w |=
2 7 ||Y Z
o o 18L% 5

which when solved by back substitution process.

s . .28

TR T R T

Note: Tha Crout’s triangularisation method is very similar to Dolittle’s method except that in crouts

X =

fy 0 0 1 Uy Uy
method the L = | a1 feo 0 |angu=|0 1 wuyl
tyy £ I 0 0 1

Alsa the order of salving the unknowns in crout’s method is column wise instead of row wise |.e., We
solva Birst £, fay, fgq BN U5, £, Fap thEA UL, Uy, and £, There is no particular advantage of crouts
mathod ever Dobttle's mathod and henca either mathod can be used for triangularsation.
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| IVE EXAMPLES FROM GATE
|
| [2 1]
| Q.1 Thematmog [A]= - _
| 4 =1 15 lﬂE'EI'.'H"I"Il::-‘lEI'!I.IE-I:I Into & product of a loweer triangular matrix ¥[L] and an

upper Inangular matri
rix [U]. The properly decomposed L] and [U] matrices respectively are

-1 ¥ _1: 1]
(@ Janu 1
4-1]"" o - ) |2 ° anu[1 ’]
> 4 ! 01
[1 0 2 1
e |, 1]and[ -l o5 i
3 0 - () 105
4 -3 anu[ﬂ 1
Solution: (d) [EE, GATE-2011, 2 marks]

Let us Iry Dolittle's decomposition by putting /,, = 1 & Ly = 1

[E 1 1 Oy, T
g o= |r3\ 1| O Lan

IJ11 - 2- u];J:-I

foy Uy = 4
4
= I —=2
= - E.
lgy Uz + Uy, = =1
_ EH‘I-ruE.2=—1

So one possible breakdown is

PR Y M

But this is not any of the choices given,
Sa let us do Crout's decomposition, by putting u,, = 1 and u,, =1

bl )

fiy = 2, 'r11”lr'?=1
1
= Ujg = §=D'E
’?1 = '4| -IIE1U1E+ ;EE':_I
= -ﬂ}!"-'ET"i';;lg = —1
= fyy = -3
2 q 2 o1 D.E}
So [4 _1] =14 =ajlp 1
Which is choica (d).
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Q.2 Match the application to appropriate numerical method.
Application
P1: Numerical integraton M1: Nawlon-Raphson Method
P2 Solution 1o a franscandental aquation M2: Runge-Kutta Method |
P3: Solution 10 a syslem of Inear equations M3: Simpson’s 1/3-rula |
P4: Solution to a differential equation M4: Gauss Eliminabkon Method |
{a) P1—M3, P2—M2, P3—M4, P4—M1 (b) P1—M3, P2—M1, P3—M4, P42 |

{c) P1—M4, P2—M1, P3—M3, P4—M2Z {d} P1—M2, P2—M1, P3—M3, P44 |
[EC, GATE-2014 : 1 Mark, Sat-3] |

Answer : (b)

. 2] . .
Q.3 Inthe LU decompaosition of the matrix E E]’ it the diagonal elements of U are both 1, then

the lower diagonal entry Ly, of L is

o o ta] L (23]

This is crouts LU decompasition, since diagonal elermanis af U are 1. So we will sstup
the equations for the elements of the matrix laken column-wise, as follows

[CS, GATE-2015 : 1 Mark, Sat-1]
Solution: (5)

Ly=2 Ly=4
.f_,,:-cUu:E:L.I'”.:1.LE|}:U,=+LR?=E'=:--41LE=9=LE-5

6.2.2 GaussSeidelMethod

In the firs! equation of (i), we subsiitule the first approxamation

(6, 52, ...ccovces 67) it right hand sicie and denote the result as
.1y and derote the result as X5

xl)

in the sacand equation we substitute (X!, x4, ...
in the third approximation we substitute (x™, i e ") and call the result as 2 in
e valuas

this manner, we complete the first stage of Reration and the entire process is repeated till

of
| S SR x, are obtained to the accuracy required. It

improved companent as soon a3 it |s available and it is called the

displacements” or *Gauss-Seldel method”. _ . _
Note: It can be shown that tha Gauss-Seidel method converges twice as fast as the Jacobi mathod”.

is clear thersfore that this meihod uses an
method of "Successive

ILLUSTRATIVE EXAMPLES FROM GATE

Q.4 Gauss seidel method is used to solve the foliowing equations (as per the given order):
X, + 20, 4 3= 1 2z, + A, +xy= 1 3 +2r2+:3.-_1 .
Assuming initial guess as x, =X, =33 = 0, the value of x, after the first iteralian |
(ME, 2016 : 2 Marks, Set-1l

JuaAaliticu lJy waliliouval il icl
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golutlon:
Thir earqueslicans grey

Ky 4 .;"'t..l ' "j.,li .

E.*lli'h.:,l r, = 1 {3]
dr, 4 ?-",.- ‘o : 2]
E'I" RERERINIY Wems cary il A1)
3'1 ¥ EI:’ i ll - '.!
:""J:.'+'1.l';_,1-|= i
X = ‘3 i FIJ;"'.-. 'f-!
¢ T A1}
L ot
3 [
X o+ 2, 4 I, = § @
¥ s 5__ > :J.'IJ.
- T
7 B
F'utr?=ﬂ I-_.=r]ll‘1l3ﬂ|]ﬂ1ll'.':lr'|l:1].:1=‘| "
Puts, =1 x, =0inequation (3) x, = 0,333
F'l.,.lt.l:.l = ] X, = ~0.333 in equation (3) x, = 1585
5, = 1.555
6.3 NUMERICAL SOLUTIONS OF MNONLINEAR ALGEBRAIC ANDTRANSCENDENTAL

EQUATIONS BY BISECTION, REGULA-FALSI, SECANT AND NEWTON-RAPHSON
METHODS
insciendific and engineering work, a requently occuring problem is to find the roots of equatars of the farm
Hx) = 0 -
. . S A
IHH(x}is a quadratic, cubic or biguadratic axpression then algebraic formula are available fige EXprEssing
Ine roods in lerms of the coefficients. On the other hand when i} I= a potynomial of nigher degree of on
axprassion iwvalving ranscendental lunclions 8.0.. 1 + cosx - 5x, xlan x - coshx, 8 - sinx ate. Algaltras
methods are not available and recourse must be taken to find the rools by approximate methods
There are some numencal methods for the solutions af equations of the farm (1), whera f{x) iz algebraic
of irangcendantal or a combinations of boilh

6.3.1 Rootsof Algebraic Equations
Letp” + px™ ! & px"F 4 _4p. | X + p, be a rational integral function of x of n dimensions, and
et us denale it by f(x); then f{x)= 0 is the general type of a ralional integral equation of the n' dagree
Dividing throughout by p,, we see that without any 1055 of generality we may lake
%"+ pt! .|-.|:_':|;,:|-:"‘lnl + . 4p x+p =0
as fhe type of a rational integral equation of n™" degree
Unless otherwise staled the coefficients p,, p.....p, will always be supposed rational,
Any value of » which makes f{x) vanish is called a root of the equation f(x) = 0.
When i{x) is divided by x — & without remainder, a is a root of the aquation f{x) = O
We shall assume that every equation of the form i(x) = 0 has a root, real or imaginary.
Every squation of the n'" degre has n roots, and no more.
Proot: Denote the given equation by f(x) = 0, where
f(x) = PgX" + Pyx"" + PA™ o R,

B e —

———
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g ba denated by 8, then f{x) g divisita By

348 | Engineering Mathematics fo

The equatian f{x) = 0 has a root, real or imaginary; lat th

X — a,, 50 thal f{x) = % 'H|:|‘I:-::

nctionof n - 1 dimansions. Again, Ihe 8quation ¢, (x) = Ohas a gy

5 a rational integral fu SR
wlmaﬁ,{:}l'-;aw st this be denoted by a,: then &,(x) is divisible by X - &,, S0 thal

pix) = (i-aleln)

where &,{x)is a rational inlegral function of n - 2 dimensions.

Thus fix) = pylx-a,)x- ay) §,(%)
ina in thi , wie oblan,

Proceeding in this way, ) = pol - 2)) (X - By {x-a)

- [ has ri rools, sinca f(x) vanishes when x has any of the values a,, .8,

nnot have mara than n roots; for if x has any value difterent from ary of the

_a., all the factors on the right are different from 2ern, and therefare fix)

raal or imag

Hence the equation fx)

B Also the egualion ca
quantities a,, ;. &,
cannot vanish ior that value of x.

7 In the above investigation soma of the quantites a,. a,. 8,...a, may be equal; in this case
however, we shall suppose that the equation has atill n roats, althouwgh these are not all differan

B In anequation with real cosfficients imaginary rools ocour in pairs. _ | |
Suppose that i(x) = 0 is an equation with real coafficients, and suppose th;h'[ has an imaginary ract
a + it we shall show that a - Ib is also a rools. The factor f{») corresponding 1o thesea hwo roots is

(x—a-—ib)(x-a+ib) or (x-a)® + b?.
Suppose thal a = ib, ¢ = id, @ = ig, ... are the imaginary rools of the equaticn f{x) = 0, and tha
i{x) i= the product of the quadratic factors corresponding to these imaginary roots; then
fix) = |(x-a)®+bfl[(x-ef +d?x-ef +g° ..

Mow each of thase faciors s positive for every real valua of x; hence ¢(x) is always positive for
real values of x

9. We may show thal in an eguation with rational coefficients, surd rools enter in pairs; thal is. ifa

+ b isarootthena - J§ is also a root.

ILLUSTRATIVE EXAMPLES
Example:
Solve the equation Bx® - 13x? - 35x2 ~ x + 3 = 0, having given that one root is 2 — 3 .
Solution:

Since 2 - /3 isaroct, we know that 2 + 3 is also a rost, and corresponding io this pair of
rools we have the quadratic factor x® - dx + 1,
Also €x? 4 13 - 352" - x4+ 3 = (¥ - dx + 1) (62 + 112 + 3);
hence the other roots are obtainad from
6xf 4 112+ 3 = 0,
o (Bx+1)i{2x+3) = 0

thus tha roots are —%,—g.2+ 1"._"_-,2 - u"ﬁ =0

TEI detarmine the nature of some of the roots af an eguation it is not always necessary to solve it for
instance, the truth of the following statements will be readily admitted

Scanned by CamScanner
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1. Hthe coefficients are all positive. the equation has no positive roat: thus the aquation ¥4 4
ay + 1 = Dcannol have a positive root

2 Ifthe coefiicients of the even powers of x are all of one sign, and the coefficients of the odd
powers are all of ine contarary sign, the equation has no negative reots; thus the equation
W20 -l s x5 2 0 cannct have a negative root

3, Ifthe equation contains only even powsrs of x and the coefficients are all of the same sign, the
equation has no real root; thus the equation 2 + 3x* + x2 + 7 = 0 cannot have a real root

4, Iithe equation contains only odd powers of x, and the coeflicients are all of the same sign, the equation
has no real root except x = 0; thus the equation x® + 2 + 3¢ 4+ x = 0 hae no real root excapt x = 0.
All the foregoing results are included in the theeeern of the next article, which is known as Descartes’
Rule of Signs.

6.3.2 Descarte’s Rule of Signs
An equation f{x) = 0 cannot have more positive roots than there are changes of sign in fix), and
gannot have maore negative roots than there are changes of sign in f{-x).
e number of real positive roots < number of sign changes in f{x)
and  number of real negative rools < number of sign changas in fi{—x).

ILLUSTRATIVE EXAMPLES
| Example:
Consider the equaton x® + 5x? - x? + T+ 2=0.
Saluticn:

Hare thare are two changes of sign, therafore thare are at most two positive rools.

Again f{ =x) =¥ + 557 + ¥ - Tx + 2, and here there are three changes of sign, therefore the
given equation has at most three negative rocts, and therefore it must have at least four
imaginary rools, since total number of roots is nine, it being a ninth degree polynomial.

ILLUSTRATIVE EXAMPLES FROM GATE

Q5 Given that one root of the equation x* - 10xZ + 31x - 30 = 0 is 5, the othar wo rools are

(a) 2and3 (b) 2and 4
{c) 3and 4 (d) -2and -3 [CE, GATE-2007, 2 marks]

Solution: (a) o
Since § ie a root, 1(x) is divisible by x - 5. Now dividing #{x) by x - 5 we gel
| :—5}f—1ﬂx’+3!:—:ﬂl:f—5}(+ﬁ
: "o o
5+ 31w - 30
-Bx" + 25%
| 6x - 30
- 6x - 30
0

= WO 102+ 31x-30 =0
= (3 - 5) (%% — 5% + 6) = O
Roots of »2 - 5% + Gare 2and 3.

. The other two roots are 2 and 3.
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Q.6 Ifacontinuous function fx) does nol have a root in he inlerval | &, bl then which o E
following statements is TRUE? o
(a) fa) fb)=0 (b) Ka) Alb) <0
(c) Ka)-Ro)=0 id) fayib)<o
[EE. GﬁTE-Eﬂ"E L | Markl Eﬂt'l]

Tk

Solution: (c)
intermediate value theoram states that if a function is continuous and f{a) b)Y « O, then gy
there is aroot in (g, b). The contrapositive of this thaorem is that il a lunction is cnnlinn_.;:.u:; -{,H!l|l|
has no root in (a, b) then surely f{a) - {{b) = 0. Bul since il is given that thare 8110 mey mrl[hlrl
closed interval (&, b] it means f{a) - fib) = 0, <
So surely f{a) - f{b) = 0 which is choice [g).

6.3.3 Numerical Methods for Root Finding
We shall siudy four numerical methads, all of which are iterative (trial and arror methods) for rog)
finding i.e. sohbing f(x) = 0
1. Bisection Mathod 2. Regula-Falsl Mathad
2. Secant Method 4. Mewlon-Raphson Mathod

6.3.3.1 Bisection Method
This method is based on the intermediate value thecrem which states that it a function I{x) i
continuous between a and b, and f{a) and f{b) are of opposile signs then there exisis at leas! O o0
betwean a and b for definilenass.
Let f{a) be negative, and 1{b) be positive (zee figure below). Then the root lies batween a and b and
let its approximate valus be given by x,, = (a + b2,
I f{x) = 0, we conclueda that ¥, is a root of the equation fixy) = 0, otherwise the root lles either %, and
b or between x,and a depending on whethar I[x,} is negative or positive. Wa designale this new
interval as [a,, b,] whose langth is |b-al/2.

As belore this is bisected at %, and the new interval will be exactly half the length of the previous
q’ra. We repeal this process until the latest intarval is gz small as desired say <. It is clear that the
.mtan.lal width is reduced by a factor of one-hall at each step &nd al the end of the n'" step, the new
interval will be [a,, b.] of length |b- &l /20,

Ib-al
(22
We then have Ih@a e <

ez A

s& which gives on simpiification n

Ina-quality (i) gives the number of iterations required to achieve an acCuracy e,
This method can be shown graphically as follows
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[aFia)l
’ : ' r : N 4 Wy o +
The iteration aquation for binetion mathod is x, = i 5 or more ganerally, x_ = — 1TH1'
ILLUSTRATIVE EXAMPLES

Examplé:

Find a real root of the equation f(x) = x*-%x-1=0.
Soluthon:

Since f(1) Is negative and (2} is positive. a raol lies batween 1 and 2 and therefore we lake

xﬂ = 32

2T 3 15 T e i
= _E- which is positive. Hance the root ies batwesn 1 and 1.5 and we

Then fix —_— -
ol T g 2
= 1.25 wa find f(x ) = —19/84, whichis negative. We therefore, conclude

g that x, = (1.5 + 1.5)/2 = 1.375.
%y = 13125, x, = 1.34375,

obtain %, ={1+1.5)2
that the root lies between 1.25 and 1.5. It follow
The procedure is repeated and the SUCCESSVE approximations are.

X = 1.328125; alc.
6.3.3.2 ngllll-FIlIiI Method

The method starts by taking (wo QuUEs
such that, i(x,) f(x,) < 0. The feraticn

for the root, just like the biseclion meihod,

5 values x, and ,
s method is different froam bisection

formula for Regula-Fal

method and it is
B h o = %
2% §-%
111:“_1—%_:%
or maore generally o T Tl S

s drawing a chord between (%, o) and ix,, 1) and seaing that the

Graphically this can be shown 3
iR % axis is X,, a3 shown below

paint of interaction of this chord W
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&

In the next iteration, the roct is either between x; and x, or between x, and X,

So x, replaces aither x, or x, depanding on whether f{x,) f{x,) < 0 or ﬂf-]ll llilgl < Q}. |

If f(xg) f{x,) < then x, replaced by x;, elsé X, replaced by x,. And the iteration is again continueg
and the new value of x°, in indicated by x, is figure Delow.

This is llustrated graphically as follows:

E 3

The process is continued untl we get as close fo the root as desired. Like bisection method, Regula-Falsi
mthod is 100% reliable and 1he root will always ba found, since always x, and x, are taken on aither side
ofthe root i.e. rootis kept frapped between x, and x, in both bisection as well as Reguda-Falsi mathods.
Both Bisection and Reguls-Falsi methods are (first order convergence or linear convargant), as
compared with secant and Newton-Raphson methods which have convergence rates of 1.62and 2
respactively i.e. Newton-Raphson method is quadratic convergent,

6.3.3.3 Secant Method
The Secant method proceeds similarly 10 Regula-Falsi method in the sense that it also requires two
starting guess values, but the difference is that f{x,) i{x,) need not be negative i.e. at any stage of
iteration we do nod ensure that the root is between x, and x,. However, Secant method uses the sama
iteration equation as Regula-Falsi method
_ hx - xy
S =
b %= %
e
&Sﬂmﬂmﬂmmvm&xﬁﬂbtﬁmd. 10 proceed to the next iteration, ¥, iz always replaced
*; and x, s always replaced by x,. This is the only and primary difference between Regula-Falsi and
Eaa.alnl method. Geometrically, both Regula-Falsi and Secant methods find x, by same way, thal is Dy
drawing the chord from (x,, f4) to (x,, ,) and intersection of this chord with x axis is %,. The advantage of
If'raﬁﬂ:ﬂ'llﬂ'ﬁﬂ'ﬂdBﬂlﬁlliﬁﬁ?ﬂﬂfmmmas&:ﬁma‘ﬂﬁggub&mwﬁmmﬁ}mamﬂ’w
orderof 1.62. However, the disadvantage is that, Secant method is net 100% reliable, since the equation

or more generally X oq @
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hXy = x
X, = —t 1
- f|—1-_,

effort is made 1o keep |, and f; 10 be of opposite signs

- which uses the same ibaraton agualion.

§.3.3.4 Newten-Raphson Method
This method is generally used to improve e
be an approximate root of f{x) = 0 ang let x,
i{x, + h) by Taylor's series we obilain

fesull chiained by one of the previous method. Lat Xy
= ¥+ N be the correct roct so that i(x, ) = 0. Expanding

f(x} = f{:rrn}l + h I'{:b] o+ I;EFT i)+ ...=0
Meglecting the second and higher ardar derlvatives we have M) + h Flag) =0

which gives - %)
| Fixg)
A befter approximation than x, is herefore given by x , whara
f
i T'E::’:
Successive approximalions are given mr;.;?_' Xy X, whera
N f(x, )
Kooy = X - T o (i
which is Newton Raphson formula,
1 &) =
€,.1 = “Effr—.i'ﬂ o (il)

50 that the Newton Raphson process has a second order or guadratic convergence,

Geometrically, in Newlon-Raphson method a tangent to curve is drawn at point [x;. flx,)] and the
point of intersaction of this tangent and x axis is taken as x, which is the next value of the iterate
ofcourse x, is closer 10 root than x,. It can be used for solving both algebraic and ranscendamal

aquations and it can also be used when the roots are complex.
ok

X

stI--a-h----

/ 5
y = fix)

The method converges rapidly to the roat with a second order convergence. The number of significant
digita in reot which are correct, doubles, after each itaration of N-R method.
Following is & list of Commaon Newton Raphson iteralive problems alongwith the Newton-Faphson

iteration equation, for solving that problem.
" i 1
I Theinverse of b, is the root of the equation f(x) = e b=
heration Equation: X = %, (2-D%)
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Iteration Equation;
3 The p™ root of

lteration Equation:

MNote: The arder of Bisection, Req

given below:

Knit

xl‘l-l'

= inverse square root b, s the root of equation K{x] =

1 e

E-"'ﬂ 53 b’%}

(p-1)x +N
pxh!

=

I?

b =0

a given number N, is root of equation f(x) = xP-N=0

ular Falsi and Secant Method and Newton Raphson Method ars

S no. Method Order
1. Bisection 1
2. Regula Fals 1
3. | Secant Method | 162 |
4 | Newion Raphson | 2

ILLUSTRATIVE EXAMPLES FROM GATE

Statement for Linked Answer Questions B and 8.

Givan a > 0, we wish fo calculate the reciprocal value T
0.7 The Mewton Raphson algorithm for the function will be

)

1
(@) ®,,4%= E[:-. +":_p.

(c) .I'..I__‘.|=.E:H1_—.E|I.E

Solution: (¢}

1

{h} T

by Mewton-Raphaon miethod far fiix) =0

a
[.::k +§:r:f]

a o

{d) x, ., =%- E:-c,

1
To calculate 5 using N-A method,

gl up the equation as

Scdllinea py calrnoscariner

X

[CE, GATE-2005, 2 marks]
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;____,_._.-—"'_'_
FDTN-HmEIhDd' hh-i-l I _f:l:.:\'._._}
F )
1%, =
= x‘l-n:lh—*—-_[ EH1E]
2

simplifying whichwe get x_ = 2x, - ax?

g8 Fora=7and starting with x, = 0.2, the first two iterations will be

(a) 0.11,0.1299 {o) ©.12,0.1392
jc} 0.12,0.1416 (d} 0.13,0.1428 [CE, GATE-2005, 2 marks]
solution: (B)
For 8 = T thelleration equation,
m xl-:rl ™ E:'k - ?“'I-I-J
with X, = 0.2
Xy = 2%-Tu?=2x02-702F=012
and ¥, = 2%, -Tx,®=2x0.12~-T(0.12)° = 0.1392
0.8 Thefollowing equation nesds to be numerically solved using the Newton-Raphson mathod.
Wedn-8=0
The itarative equation for this purpose iz (k indicates the itaration level)
2% +0 _3xi+4
['E} xh‘.l_ﬁxi'i'd {n] th-l Eii'l"g
% _ A ﬁ +3
{a) Itf1ﬂr1¢_3:2h+d [d} h*l_g;,:ﬁ.‘.ﬂ
[CE, GATE-2007, 2 marks]
Solution: (&)

Q.10 The square root of a number M is 10

fix) = P+ 4x-9=0
Fix) = 3x*+ 4

M-8 aquation for iteration is.x,, ;= %, — )
.Eq K# r,{:h]
f(x) = %+ 4% -9
i) = 3){5.1.4
[Hha + 4x, - 8) = [EIE +¢Ek}—{ﬁ + 43, -9)
o1 =T T @44 3E + 4
2x) + 9
Aial = E'KHE + 4

be obtained by applying the MNewtan Raphson iterations o
the iteration index, the correct itarative scheme will ba
{H] AR l[]{i -r--r:'l-]

B % Fl[ﬁ;,i]
u = L:| 1 ] i :qz

1 N
@ 5=t 2) @ %35
[CE, GATE-2011, 2 marks]

the equation x2 = N = 0. If i denotes
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T ——

[ 2 _N 2 NI
o1 = X l'rxl:l =x|'[xl ]= < B ="[1.+EJ

Solution: (a)

“T(x) 2%, 2% 2| »

Q.11 Tha guadratic equation »* - 4x + 4 = 0 is o be solved numerically. starting with the it
guess %, = 3. Tha Newton-Raphson methed is apolhed once to get a new estimale and then the
Secan! mathod is applied once using the initial guess and this new estimate. The estimars
valus of the rool after the application of the Secanlmethod is

[CE, GATE-2015 : 2 Marks, Set.1]

Solution:
fix) = @ —dx + 4
Flx) = 2x -4
.1.'|]=3
3 =1 F3) =2
By Nawton Rapshon mathod,
f{x.:,} 1_5
| —-.-.-—:3-"'——
Xy g f"{.l'.u.} o e
5 25 1
Fl=] = =525 -
(E)_ 3 1044 3
g = xolfls) _ foxo =4 (5”3]‘{‘“3] 7
B t methad, = o m=apliie) I Tleh ik
T =) | b T, "3
4

Q.12 In Mewton-Raphson iterative mathod, the initial guess value (x_ ) is considerad as zero while
finding the roots of the equation: fx) = <2 + Bx - 4¥ + 0.52°. The correction, Ax, o be added
0 x,; N the first iteration is

[CE, GATE-2015 : 1 Mark, Set-11)

Solution:
flz} = -2 + Bx — 4x® + 0.5
fflr) = B—Br + 1627
Xy =0
Flxini) -2
By Newion Raphson Method, X = ap _ﬁ = 0= =
1
= I, = E 1
A= X=X =7
Q.13 Starting from x, = 1, one step of Newton-Haphson method in solving the equationx® + 3x-7 =0
gives the next value (x,) as
(8) x,=05 (b) x,= 1.406
() ®y=1.3 {d) x, =2

[ME, GATE-2005, 2 marks]
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—-"'"-.-_-_-_
sodution: (€]
From Newton- Raphson matho
%, = %, — 1%a) )
Given funclion is fix) = P aax-_7
and Pl = 3x2 + 3
Putting By =1,

M) = D =(1P +3%(1)-T=-3
Fidg) = f1)=3x {1+ 3-8
Substituting x,, ) and F(x) values into (i) we get.

X = 1~[ﬂ)u1 =15
6

Q.14 The real root of the equation Bx - 2 cosx - 1 = 0 {up lo two decimal accuracy) is .
[ME, GATE-2014 : 2 Marks, Set-3]

Solution :
fix) =52 -2 cosx-1
flx) = & + 2 sinx
By Newton Rephson’s equation:
ey i)
BT N P}

Assuming x, =1 (1 rad = 57.32°)
1_511—2::&5{5132“]4

-] b AL = 5&32
' 5+ 25in(57.32°) “
: ) 5x0.5632 -2008(32.27%) =1 _ . .o
o ks 54 28n[32.277)
_ _ 5x0.5425 - 2cos(31.08) -1 _
x, = 05425 i o = 05424

.. Real root, x = 0.54

Q.15 Newton-Raphson methad is used to find the roots of the equation, x? + 24 + 3r -1 = 0.
If the initial guess is x, = 1. then the value of x after 20d iteration is
[ME, GATE-2015 : 2 Marks, Set-3]

Solution: (0.3043)
fir) = 2%+ 22 + 3r - 1

f{x]=3[2+dr+3

xp=1
_fx)
1 Fix,)
fm) . [8
=% ) = o] T
f(0.5)] _ 0.125
%= 05-froe = 05-55g) 0.3043

3
AL L IO AlliIvJuaal vl
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Q.18 Equation & -1 = 0 is required o be solved using Newton's method with an initial guess x, = _y
Then, after one step of Newlon's method, estimate x, of the sclution will be given by

fa) 0.71828 (bl 0.36784
(c) 0.20587 (d] 0.00000 [EE, GATE-2008, 2 marks;
Solution: (a)
Hare f(x) = @ -1
i) = e*
The newlon Raphson Reralive equaton is
flx)
Nii" = 'ﬂ|_ f'{_;.;l}
fx) = & =1
Fix) = g
" =1
My e “_E-"‘.I_
et —{e" -1 e“x- 1) +1
IL.e 'H'l + | L= E'{_ - Exl-
Wy
Now put | =0 y, = E—%
Put x, = -1 as given, X, = [&'{-2) +1)fe! =0.71828
Q.17 Letx®- 117 =0. The iterative staps lor the solution using Newton-Raphson's methad is given by
1 117 117
ta} :h+l=§{x‘+f ﬂl'l] HH+1=_;{“—?
Xy 1 117
te) 00 ke T lidl?fu+1=“u-§[“h+“—h]

[EE, GATE-2009, 2 marks]
Solution: (a)

F o L
IJ':H:KK_ '[?h-;]'_' al TI|l=! +II_?]

e i 2Xy E[ﬁ' X

Q.18 Roots of the algebraic equation x® + @ + £ + 1 = 0 are

{8} (+1, +j. =) b) (+1,-1, +1)
{c} (0,0.0) {d) (=1, 4, )
T— [EE, GATE-2011, 1 marks]

-1 is one of the rools since
{-1F+{-1}2+|[-‘|:|+1 =0
By polynomial division
417 x4
= X% + 1
(-1}

= 13+x1+x+1=:x?+1}[:¢+1}
S0 rools are (=1, +|, =)
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.18 Solution of the variablas x, and x, for the following equations is o be oblained by empIoying
the Newtan-Raphsaon iterative method
gquation (i) 10x, sinx, - 0.8 = 0
equation (i) 10x3 —10xs cosx, -0.6=0

Agsurming the intal valuas x, = 0.0 and x, = 1.0, the Jacobian matrix s

10 =08 10 0O
@ o 08 B 1o 10
g 08 10 0
© |10 -06 i) [m -m]
[EE, GATE-2011, 2 marks]
aolution: (b)
uix, %) = 10x,sinx, -0B=0
vixy %) = 1083 ~10x;cosxy -06=0
Thea Jacoban matrix is
du  du

N 10x5 COS X, 108inx, l ~ [H} Er]

av v | - | 10xgsinx, 20x;-10cosx;| |0 10

%, %,

Q.20 When the Nawlon-Raphson methed s applied lo solve the equation I(x) = »* + 2x—1 =0, the
solution at the end of the first iteration with the initial guess value as x; = 1.2 8

{a) -0.82 (b} 0.40
(¢) 0.706 (d) 1,69
[EE, GATE-2013, 2 Marks]
Selution: (c)

fix) = el

fix) = 30 2R +2=632

flx,) = (1.2P+2x12-1=3.128

fixg) 3718 _
- _ At L qo ==l =0.706
F{:"J % fi‘[ﬁq]‘ B.32

Q.21 The function f{x) = &* - 1is to be soived using Newton-Raphson method. If the initial value of

1.0. then the absolute arror observed al 2 fferation is )
R [EE, GATE-2014 : 2 Marks, Set-3]

Solution :
Given, fix) = &*—1
oF, f{HH]I=rE"“—‘|:IB.I'IdKﬂ-1

In Newton-Raphson method, we have:

ol

B o1 ™ [“H ™ i)
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fx,)
] L i , i I
Ky | L i :':.ILJ 1.:'
MW, i, = a% - lwa' = {={e-1
aned I{x} = &
: Pix) =0’ =0
Pulting the values, we gol
{1 ﬂ--r.'|+__1]_u
oo 1] e
, Ix,) (i}
Also, Xy |r.| " Pixy)
M X, = .l_.ﬂ1unur(t,|=|;n“'—n.
- a
Pixd = o

FPutling the walues, we gel.

i = ﬂ.].'
1‘-,'-=\ g {1} 1'}] I e lnﬂ.ﬂﬁ

Tharators, the absolute error observed at second iteration = 0.06.
Absolute arror at any lleration

_ | Exact value - Approximate valua
Exact valua

" |N|arw value = Cid value
= Mow valua

[DEE- 0.368 0,248

.22 The equation x? - %7 + 4x - 4 = O s 1o be solved using the Newtan-Raphson mathod. Ifx = 2
iz 1aken as the intial appraximation of the solution, then the next approximation using this

method will ba
2 4
{a) 3 (o) 3
(e 1 (d) g
[EC, GATE-2007, 2 marks] |
Solution: {b) |
Hers, Xy = 2 |
o) = -2 + dx -4 I
Ple) = 32— 2% 4 4 |
flng) = f{2)=8 I
Plxg) = F(2) =12 |
s B e A |
= S R T T j
;
3
|
_—J
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0,23 The recursion relation 1o solve x = g-s

) e using Newton-Raphson methad Is
il = i
i !h] xnl-l:xn_ﬂd':"

%
e} %pas= (14 e @) x_ = B8Ry}
mal = :':“ I E_ﬂu
, 2 marks
solution: {c) [EC. GATE-2008 1
The given eguation to be solved g

X omog
Which can be rewrittanas fx) = «_ g . 0
Fix) = 1+ @
The Newion-Haphson terative formula is

Xais o %= K%,
Fix.)
Here ) = %, - g™
fix) = 14 g™
. The Newton-Raphzon iterative formula is
X =@ gy | g Fn g
agl = Ep = . = . = (1
: T+a™™ s { H'I1":|1+E|'°'rI

Q.24 A numerical solution of the equation Kx) = x+./x -3 =0 can be abtained using Newton-
Raphson method, If the starling value is x = 2 for the teration. the valuse of x thal is to be used

in the nexl step is
(a) 0.306 (b) 0.738
{c) 1.684 (d) 2.308
[EC. GATE-2011, 2 marks]
Solution: (¢)
.1
%1 r'"" fi{:‘n}
x=2 fix) = 2+2-3=42-1
1
= 14—
N
1
= 1
Y
fixg) V2 -1
Then, X, = Kg—mils = 2~————
Fixg) LR
22
= x = 1684

Q.25 The Newton-Raphsan method is used to solve the equation fx) = x°—5x® + fix -8 = 0. Taking
r = 5§, the solution obtained at the and of the first Heration is .
[EC, GATE-2015 : 2 Marks, Set-3]

the initial guess as

gc;mmmScanner
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— = S ]

Solution; (4.280)
fix) = x" - hx” + Bx - B
Wy =
flx) = 3" - 10x + 6
_ M) e i)
i e

n ] = r
b -5SxD +0x8-0 g 25 g 0007 = 4200
Ax8 -10x5+8 31

Q.26 A plecawise linear funclion (x) is platted using (hick solid lines in the ligure Below (e plo g
drawn loscalal.

e e e e o

{8, 1.0
i wa use the Newton-Raphson methad 10 find the roats of i{x) = Dusing x0, x1 and x2 respectively
as initial guesses, tha rools obtained would be
{a) 1.3,0.6 and 0.6 respectively (b) 0.6, 0.6 and 1.3 respactivaly
fe) 1.3, 1.3 and 0.6 respactively (dy 1.3, 0.6 and 1.3 respactively
[CS, GATE-2003, 2 marks]
Solution: (d)

Starting from x,, slope of lnea = F—F% = -1

i i
ot = |
|

yeimiercapl
Egn.ofaisy = mx+c=-1x+ 1
This line will cul x axis (e, y=0), alx=1
Sinca x =1is = than ¥ = 0.8, a perpendicular at x = 1 will cut the line ¢ and not line b.
s ool wil be 1.3
Starting from x,,
the perpendicular al x, Is cutting line b and roct will be 0.6
Starting from x,,
1-0.5 _
205-155
1(x = 1.55)

Slope of line d

1

Egquation of d is y-05
8. ¥ = ¥=1.05

This line will cut xaxisatx = 1.05
Since, x = 1.05is > than x = 0.8, the perpendicular at x = 1.05 will cut the line ¢ and not ing
b. The root will be therefore equal 10 1.3.
So starting from x,, x, and x, the roots will be respectvely 1.3, 0.6 and 1.3.

I My NI UL e
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Consider the seriesx, , =X = 9
‘ o il B, * "o = .5 obtained from the Newlon-Raphson method,

' The series Converges to

1.3
EZ: 1.8 tb] V]
| d) 1.4
golution: (2) [CS, GATE-2007, 2 marks]
Givenr,

X = % 4..._‘EI =
ol Eg =058
as n ==, Whan the sarigs converges

O #n = @ = root of eguation
o 8§

o= =

£ Bao

4o + 9
B

do® + 9

i
ﬂ:ﬁ-n
1]

i

hyl G B

o o= =15

; .28 The Newton-Raphson iteration x = %[::“ + %] can be used to compute the

(a) squareof R (o) reciprocal of R
(c) square rootof R {d) logarithm of R
[CS, GATE-2008, 2 marks]
Solution; (¢)
1 H
! Bt = EL?.,.,+!—“]
| &l convergance Bapt = ¥p=n0t
1 R
= —| i +—
&= 21 11]
A uE+F:|
| htﬂ:"’E_ o
o = of + H
— a = R
a= JR

So, this Reration will compute the square roof of B.
Correct choice is (c).

Q.28 Newton-Raphson method is used 1o compute a ool of the equation x* - 13 = 0 with 3.5 as the

initial value, The appraximation after one iteration 5

(a) 3575 (b) 3677
:.:: 3667 (d) 3.607 [CS, GATE-201D, 1 mark]
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Solution: (d)

The aquation is f{x) = x* - 13 =0
Newton-Raphson iteration equation is

f{xa)
M= o | Fixg)
flxg) = 3% - 13
Fixg) = 2%
xg—13] x§+13
ekt 2 |7 oy
pt %, = 3.5(as gven)
3.5% 413
R T T

=~ The approximation after one intaration = 3,607

.30 The biseclion method ks applied to compute a zero of the function fix) = w—x? = - dinthe

interval [1, 9]. The method converges to & solution afier __ iterations.
(@) 1 (b) 3
c) 5 id) 7 [CS, GATE-2012, 2 marks]
Solution: (b)
If bisection method is applied 1o given problem with x; =1 andx, =9
Aler 1 ltaration i34 =5
L=

Q.31

Mow since f(x,) fx,) > 0, o, replaces x,
Mow, %, = 1andx, =5
1+ 5

and after 27 teration x, = 5 =8

Mow since #(x,) f(x;) > O, x, replaces x, and X, = 1 and x, = 3 and after 3rd Iveration
1+3

M, = w—— g

Now fix) = f(2) =24 -23-2-4=0
S0 the method corverges exactly o the root in 3 iterations.

In the Newton-Raphson mathod, an initial guess of x; = 2 is made and the sequence X, ¥,
X,... is obtained for the funciion
0754 -2¥¢-2x+4=0
Consider the slatemants
() x,=0
(I} The methad converges to a solution in a finlte number of iterations.
Which of the following is TRUE?
(a) Only | (b} Onby 1l
{c) Bothland Il (d) Meither | nor |
[CS, GATE-2014 (Set-2) : 2 Marks]

Solution : (a)

Compute x,, X,... using the iteration agquation
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.-""'_'_-_.-_._
X, = x - ““n]] -
™ [ M) L

= Il:l - | 2. J'.I = ﬂ, -T-l:-.= E. xﬂ-= ﬂ,...
%y = 0 15 comect bul it converges in an infinite sleps {i.e. Il doesn'l converge)

0.75x3 — 2x3 — 2xp + ﬂ]
2.25%5 — 4Ky — 2

(.32 The secant method is used 1o find the root of an equation fx) = 0. It is staned from two distinct
pstimates x, and x, for Ihe raot It is an iterative procedure involving linear interpolation to a
roct. The iteration stops if fx,) is very small and then x, is the solufion. The procedure is given
below. Observe thal there is an exprassion which is missing and is marked by 7. Which is the
suitable exprassion that is to be pul in place of 7 So that il follows all steps of the secant

. method?
i Secant
| Initialize: x,. %, e, N I & = convergence indicalor
i 1, = f{xg) i N = maximum number of ilerations
i=D
| while (i < Nand | f, | > &) do
| =1 I update counter
! X =17 {f missing expression for
: I intermediate value
l X=Xy if resel x,
| X, = X M resat x
: fy, = f{x,) i function valuee at new x
: end while
I il = & then i loop is terminated with i = N
| write "Mon-convengence”
i glse
| write “return X"
| end if
| {a) K = H:u._ LES) I'u 'r{’:n = ":a} {b) = {In i f{:n}} fo £y = %)
; f6) = (X —%,) fi/ thy— ¥ (x,) () %, = (g =20 £, 00, ~F (x )
| [CS, GATE-2015 ; 2 Marks, Set-2]
! Solutien: (c & d)
[

fixg = 1y
SEE-HJ'I‘I n'lElhﬂd fﬂrmulﬂ F-S x:. = r '-ﬁ]
1

L&, Ml = EI.:.E‘-"-

] .f]-:, -3 i'l
| fx, — Xy
| == (4, - %) Fb;" (f,— Fx) =%, - (%, — &) B f {Fy = F X)) = #-ﬂ—i'-—fh_r
i a
*. Both {c) & (d) after simplification reduce to the required formula. So both (c) and (d)

|
i
i arg oowrect,
|
|
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Q.33 Solve the aquation x = 10 cos(x) using the Newton-Raphson mathod. The initial guess js

o % . The value of the predicted root after the first iteration, up 1o second decimg;,

is
[ME. 2016 : 1 Mark, Sat-1)
Solution:
T
flx) = x— 10 cos x f ;] = —————azﬂﬁ
Fix)= 1+ 10sinx ’[-E] =08.07
(s E*(—E.Eﬂﬁ] _x 6286 _
s= R -pey =4\ 807 )= 3 gor - 1960

Q.34 The root of the function fx) = x® + x - 1 obtained after first iteration on application of Newton
Raphson scheme using an initial guess of x, = 1 Is

(a) 0.582 (b) 0.686
(e) 0.750 (d) 1.000
[ME, 2016 : 1 Mark, Set-3]
Solution: (c)
i) e +2-1 fill=1+1-1=1
Fix) = 3 + 1 Fl)m3+1=4
Xy = :ﬂ—ﬁfi}i —%:1—0.25-1:.?50

0.35 MNewton-Raphson method is to be used to find foot of equation 3x — &° + sinx = 0. If tha initial
trafl value of th rools is taken as 0.333, the next approsimation lor the root would be

[CE, 2018 : 1 Mark, Set1]

Solution:
According to Newton-Raphson Meathod:
X
Kooy = X = F’{ x:}}
fix) = 3x — & + sinx
flx) =3 - & + cosx
£(0.333)
- %= T omm)

_ 0333270333 -8"% + 5in0.333
3-6"" +cos0.333

X, = 0.6
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The gg-.era.l problam of numericai integration may be stated as follows. Given a set of data poinis

| ol (X ¥sd oo R V). O @ Bunction y = f(x), whers i) is ot known explicilly f is required to
::;,-:;.ura the value of the definite integral, & 1(x] is not axplicitly

= [ vdx 0

| Ag in the case of numerical differentialion, we replace f{x) by an interpolating polynomial #(x) and
cbtain on Megralion an approximate value of the definita integral, Thus, diffarent integration fomulas

! be obtained chapandlm upon the type of interpalation formula used.

i Lot the intarval [a.b] be divided into n equal subintervals such that

8= ?:I:I R T :'i? . . T b
Claarly. Xy = %g+ N
Hence, the integral becomes, | = J:'rdx

Approximating y by MNowton's Forward Difference lormula, we cbtain,
|= j:[fu + pAyy + PP A%y + Hﬁ—g{p =2) 53

2
since X =¥ + ph, dx = hdp and hence the above integral becomes

hjq"Ir.;. +payg + HPE Y a2y, + w.ﬁn + ..._1:“:'

which gives on simplification

L" v = nn[yr,;, + %a}rﬂ, + %ﬂfh + n:nE—dE}"‘ 5%y + ]

Thie is known as General formula, we can obtain difierent integration formuias by puttingn=1.2,3
. ale. We derive hare a few of these formulae but it should be remarked thal tha Trapezoidal
and Simpson’s 1/3 rules are found to gve sufficlent accuracy for use in practical problems.

The following table shows how Ayy, Ay,, A%y, are derived from (xg, Yol (%, ¥,). (X5 ¥) €1C,

¥y | Yo
A
:":1 '!p"r ﬂ:t ﬁgﬁ}
Xa | ¥
|. ﬁyﬂ o }r'| o Yl;l
Ay, = Yo=Y
and ARy, = AY, =AY =Ya-2¥; + Yy

64.1 TrapezoidalRule
Setling n = 1 in the general formuila,
obtain;

all differences higher than the firat will become zero and we

1 h .
I: ydx = h[‘y’.;. +£:*'—"'Fﬁ:| - ”['ﬂ"u *E'[fﬁ - 'ﬁ]]‘] = Ehln +y] (0

For the next intarval [x,, x,], we deduce similarly
[Py = gly+vel i)

and 50 0. For the last Interval [x,, 4. X]. we have
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F ydx = gi'ﬁ‘ln.l"'?ﬂ! L1k}

combining gl these exprassions, we pbtain the rule

j" yelx = %Eyu+2{u.+rg oot Ynoal+ ¥
K

which iz known as trapezoidal rule

The geomelrical significance of this rule is thal the ¢
|oining the points (%, ¥o) and (x,. y,): (%, y,) and (X ya)
The area bounded by the curve y = H(x]. the ordinales x = X, :
approximately equivalent to the sum af the areas of n Trapeziums obtained

Simple Trapezioidal Hula:

urve y = f{x) is replaced by n siraight lines
{x_ . ¥, ) and [, ¥,
and x = »_and the x - axis is than

b
Shaded Area = Area of Trapeaium = If{}:]dx
a
Compound Trapezoidal Rule (with 4 pis and 3 intervals):
L

b

=A x £ :|,_.||:b

b
Shaded Area = Sum of Area of 3 trapezium = jl{x}dx
a

6.4.2 Simpson’sRules
6.4.2.1 Simpson's 1/3 Rule

This rule is obtained by putting n = 2 in general formula i.e.. by replacing the curve by ni2 arcs of
second degree polynomials or parabelas. We have been,

i 1
Eh[:.',:, + Ay + = .ﬁ"’-,rn]

Fyrdx

]

h 1
= 5[“ +(¥1 - '5’1:]'+E'['.~’2 -2y + ‘.-'n}]

—Il'l'ﬂ

e
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EASY
| e

= .:E[.fj"'-"-f.+~l,-:_]
F. r_-l
g &y ' yox = El_-,'z +dy. - 'II"J.[
| f
s firally Jrer = Glrz=dyion)

e e up We anian

: g
JIW o Ei}'c*q{}’1+_§3+jri T - |

i
: . . A
r & kriown @5 "Simpson’s 1/3 rule® or simply "Simpson’s rule®. It should be noted that this rule

+'_.',,_;]+‘r’,]

c . -
:;;u:"'ﬁs e divieions of the whole range ino an even number of subintervals of widih h.
g Simpson's Rule:
samp .
F=fn]
e
.,-"‘;-E
]
=
=]
—
. i
L 8 [ [u]
]
Shaded Area = jf.[;.:;m
d
i ! le: {7 pis or & inkervals)
Compound Simpson s Ru
E ]
¥
= ="
i P
e v
= sy
g %D

S-Eﬂlﬂg e ifferancas higher than the third will become Zero
i n | SEMNE 'hﬂ[ all di o g

3in Q-H!'IEI'EF ﬁ]’l‘ﬂulﬂ we ob
and we Elbtﬁl-'l'l.

k 3 3,2, 1,38
j:‘.dx = Eh[':'n +Eﬂ'_|'|;|+:1'.|1 3'.;.+E& flrl:l]

3 L +
= 3{3’&*%15"1'%“‘;{?:'25'14'?0]*31'!'3 Iy +3Y) ‘J’n}]
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= %[ﬁ; +3y, + 35 + ¥

an
Sirmidlarly, ]}'d.ﬂ o Flh + 3y, + 3y + v |

1,

and s¢ on. Sumining up all Ihase, we obtain,

K,
I'ﬁ"d!ﬂ %[ﬁ"u+3¥1*3?’2*5"5-11*':3"3"'3'&’4*'Bi"u*‘-l"ﬁl"*"' F¥n. 3t Ha- g+ oy vy,
%

£
INH: %h’n*'ﬂh*Wz+ﬁ3+3f4+3?'5+2fﬁ+25'n a v 2+ 3 Y
"

This rule calied "Simpson’s 3/8 rule”, is not so accurate as Simpson’s rule.

ILLUSTRATIVE EXAMPLES

Exampie:

Evaluate, | = _[;ﬁu: cofrect to three decimal places using (i) Trapezcidal- rule and

(i) Simposon's rules (lake h = 0.5) and check which rule is more accurate.,

Solution:

The value of x and y are tabulated below.

X | O

0.5

1.0

1
1+ x

'!||l'=

1.0000

0. 6667

0.5

(a) Trapezoidal rule gives:

jim E‘fl-mﬂn+2{ﬂ.ﬁﬁﬁ?]+ﬂ-ﬁ] = 0.7084

(b) Simpson's rula gives:

Et[1 0000 + 4(0.6667) + 0.5] =0.6945.

We solve this question by both the Trapezoidal and Simpson’s rules with h = 0.5,

Nate that the exact answer for this problem by analytical integration method
1
1 1
| & [——dx = [log.(1+x)]. =log.2 = 0.6831
gmdx [loge (1+x]]; = log,

Clearly, Simpson's rule ks closer to the answer and has lass error comparad to rapezoidal nie

ILLUSTRATIVE EXAMPLES FROM GATE

.36 The table balow gives values of a function F(x) obtained for values of x at intervals of 0.25.

» |0 020 [05]|075] 1.0
Fx)| 105412 |08 |0.64 |050
The value of the integral of the function between the limits 0 to 1 using Simpson's rule =
(a) O.7B54 (D) 2.3562
(c) 3.1416 (d) 7.5000

Scanned by CamScanner
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47 The estimata —
s 9 o5 X Obtained ysin,
{a] 0.235
(c) 0.024
Solution: (d)
1.
Exact value of 59_{ Gt .
a5 * llog xn‘ﬁ

Approximate value by Simpson

Numerical Methods | an

(b} C.0es
{d) 0oz

[CE, GATE-2012, 1 mark]

= 109(1.5) - log(0.5) = 1,008
5 rule with 3ptsis

h
= M0+ 4f()+1(2))

. h=Ny=-1=3-1a2
qnnsmanmmdptanhthamnm;M}

ha 8=8_156-05_
2

| Here
| n
| Thatabiels 1% |
olos| L
05
111.0 1
: 1
1
211, T
ol By
0.5
3

0.5

1
| = —--[-—+n1+—] = 11111

0.5

So the estimale exceeds the exact value by
Approximate value — Exact value = 1.1111 - 1.0986 = 0.012499 =0.012

Q.38 The magnitude of the arror (correct to two decimal places] in the estimation of follawing integral
using simpson 1/3 rule. Take the step length as 1

Solution:

rHinmicu Lly waliiovaliiivcli

1.5

&
_[{x‘nﬂ]-u:
G
[CE. GATE-2013, 2 Mark]
oli]2]3] 4
j0111[26 | 81| 266
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[1]
Using Simpson’s Rule, the estimated value of the integral [(x* + 10)dx
1]

%[{1I:}+EEE}+ 2(26)+4(11+91)] = 24533

The exact value of integral

4 & 4 ]

qum]dx = X dox| = 4—+'||:|:-cd = 244.8

fl 5 5

.. Magnitude of error = |exact value - estimated value| = |244.8 - 24533 = 053

.39 The imegral f.TEd.r with x, = x, > 0 Is evaluated analylically as well as numerically using

& sngle applicaticn ol the trapezoldal rule, If I is the exact value of the integral obtained
analytically and Jis the approximate value obtained using the trapezokdal rula, which of the
following slatements is correc! about their relationship?

(@) J=TI

) J<i

(c) J =1

{(d) Insufficient data to determine the relationship [CE, GATE-2015 : 1 Mark, Set-1]

Solution: {(a)

Exact valueis computed by integration which follows thee exact shape of graph while computing
tha area.
Whereag, In Trapezoidal rule, the lines joining each points are considerad siraight lines which
is not the exact variation of graph all the time like as shown in figure.
: =T
OH

e

ETU = —Ef {ﬁ}}{ﬂs
Herg, fix) = x*

i) = 2x

Fix)=2=>0
Since *(x) i positive, the error 15 negative.
Since arror = exact - approximate.

=1-J

and since error iz negalive in this caze J = | is frue.
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e

ﬂ-‘ﬂ For step-gi128, &v = 0.4, (he value of rﬂlfﬂwing integral l..EliI'lﬂ Simpson's 1/3 rule i5
T .
[ (024255 - 2005 + 6755 - 905" + 400<° |dlz
¥

[CE, GATE-2015 ; 2 Marks, Set-I]

solution
d= 0b=08 Ar=04 x | 0| 04 | O8
) = D2+ 25— 20002 + 675:7 - 900:* + 400, 2 456 | 0.232
By Smpson’s 1/3 Rule d LR b
o8
wx) = J (0.2+ 25y~ 200" + 6752 - 9005* + 400:5)dx = %L"‘"D +ayy+ ¥

a

Yo= MO)=0.2

¥y = WO0.4)= 2456
¥:= WO0B)=0.232

0.4
Wn) = -S—(D.E+4HE.455+D.232] = 1.367

n
0.41 A caiculator has accuracy up lo 8 digits after decimal place. The value of J'simt dx when
a

evaluated using this caloulator by frapezoidal method with B equal intervals, to 5 significant

digils is
{a) 0.00000 (b) 1.0000
{b) 0.00500 (dy 000025  [ME. GATE-2007, 2 marks]
Solution: (a)
Rie 2n-0_n
- B 4
Yy = gin (0) =0
|| x | y=sinx i HHE] = 0.70710
o|0 o0
L V., = Sif -E =1
1| 7 | 70710 2 3
X = «inf 3% | =07010
2 E 1 ¥5 Sln[ 4]
= =0
3|3% | aTo7i0 Yy = 8in{z)
" g Ein[_ﬁi =-0.70710
4 n o 8 4
it
i 1 - L
5| 5= | -0.70710 Tow Em[q] 3
6 EE -1 T o 10
: ¥; = EII'I(T] 0.707
7|7= | -0.70710
8| 2n 0 B 4
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Trapezoidal rule

#y 4 mh h
j fix)-ds - E{{yn + Yy + 20+ Ya ot Yol
%

s ]
[ sinx- dx g x[(0+0)+ 2070710+ 1+ 0.70710+ 0-0.707 10070740y
a

= 0.00000

Q.42 Torque exerted on a fiywheel over a cycle is listed in the table. Fliywheal anergy (in J per unis
cycle) using Simpson's rule is

Angle (degres) [0 | 60 | 120 | 180 [240 | 300 | 360

Torque (Nm) |0 (1066 |-323 | O |323|-355| O

(a) 542 (b} 9ea
() 1444 (d) 1986
[ME, GATE-2010, 2 marks]
Selution: (b)

oz
Fiywheel energy = [ T(6)d8 , where T(8) is torque exertad,
0
The integral by using simpsons rule is
h
| = E[[ﬂ+4l,+2f.‘,+df]-l 2+ 4l + 1)

h

60 dagrees = % radicus

;
3 xg x [0+ 4 x 1066 + 2(-323) + 4(0) + 2(323) + 4(~355) + 0]

= 303

: 3
Q.43 The integral L ;dx . when evalualed by using Simpson's 1/3 rule on two egual subintervals
esach of length 1, equals

{a) 1.000 (b} 1.088
{© 1.111 (d) 1.120
[ME, GATE-2011, 2 marks]
Solution: ()

1
f(x) = —
o hisler

1 1

21 1

& e !

| = _!‘xﬂlﬂ 2

. 1

3 i
s 2 ”

- h 1 1.1
. 3{f°'+'4t""’z} = E[HdKE“E] =1.111

L
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4
x| . : i
Q.44 The value of EJ.-E.H: ) calculated using the Trapezoidal rule with five gsubintervals is __.

[ME, GATE-2014 : 2 Marks, Set-2]
golution :

: 25 28 11 14 a7 F

¥y=Mx) | 01963 | 10208 | 11314 | 12237 | 13083 | 1.3883

“ "o ¥ Fr ¥y ¥a ¥u

4
b
I = Ej’slrn{.'l':":lx = E[[’-!-“.'.?EJ_I_E:FII +?2+?3+F4]

D3
I= —-[(D.9163+ 1.3863) + 2(1.0296 + 1.1314 + 1.2237 + 1.3083]]

03
= = » 11,6886 =1.7533

a1 _
Q.45 The dafinite integral L ;ﬂ-l' s evaluated using trapezoidal rule with a step size of 1. The

COMEct answear is
[ME, GATE-2014 : 1 Mark, Set-3]

Solution :
x 1 2 3
y=fx) 1 0.5 033
¥n ¥o ¥ ¥a

31 i ]
1= _L ;ﬂ! = ‘E'E'['h’n +yz )+ 2y,]
233
= 1{1-"'].331-23{05] = —=1.165
2 2

2 . .
Q.48 Using a unit step size, the volume of integral _[1 xinx de by trapezoidal rule is

[ME, GATE-2015 : 1 Mark, Set-3]

Solution: {0.693)

¥ ¥a
x |1 s

flx) [ D] 2(In

- rz—][m +¥n)

I= %[(HE]HE} =In2 =0.693
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. 3 a
Q.47 Simpson's %llﬂﬂ' is used to integrale the function flx}= EI! +g Delween s = Oang , . 4

using the keast number of equal sub-intarvals. The valua ol the integral is e

Solution: (2)
3 B
fx) = 5:3+E
x | 0061
flx) | 1.8 [1.95 2.4
i h
a2 Jﬂf{ﬂ = El}"u "'4]"'1+3"'2|

'3_;5-[1_3 +4{195)+24] =2

Q.48 The values of function x) at 5 discrete poirs are given below:

x |elo1]o2[03]04
flx) | 0|10 | 40 | 90 | 160

4
Using Trapezoidal rule step size of 0.1, the vaiue of jf{-ﬂm |
0

[ME, GATE-2015 : 2 Marks, Set-2]
Solution: (22)

04
_rﬂx}j'x i g{yﬁ+2|y,+n+ }-3}+y4] - %[D+E{m+4ﬂ+9ﬂ]+1ﬁﬂ} - 2D
0

Q.49 Using the trapezoidal rule, and dividing the interval of integratian into three equal subintervals,

the definite integral Jder is .

[ME, GATE-2014 : 2 Marks, Set-2]
Solution :

2
= =—= 0,667
3

-0.333 | 0333
+1.333 | 0.333
1 1

1= 2 +2 424 +4)
0667

(1+2x0.333+ 20333 + )= 1.11
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Q.50 The velocity v (in Kilome :
intervals of 1l i ] of o ol | is gi
me Hin mi Autes) a:mlefmml-m e which starts from rest, is gven al fixed

B
1‘1‘5 B |02 TieTia T
B[220 [11[52 o

CS, GATE-2015 ; 2 Marks, Seot-3
golution: (308.33) [ R ' )

Given that the motorbike stang from rest
Mi=0 v=0 |

So the table now becomes

fl2lsle6]eTo12[wlETaT=m
vilejalaslelwla s 20

h = Table spacing = 2 MHRLES
So the distance (in kilometers) coverad in 20 menutes using Simpson’s ruke

- Tl.-d]' o %nrﬂ+4n+2&+4ﬁ+---+ﬂcl
LI

= gl_tl+4x1l]+2m: B+4x25+ . +0) = 30933

Q.51 Numerical integration using trapezoidal rule gives the best result for a single variable function,

which is
(a) linear (b) parabolic
(c) logarithmic (d) hyperbahc
[ME, 2016 : 1 Mark, Set-2]
Solution: (&)

Trapezaidal rula gives the best result in single variable function when the funchon is linear
(degresa 1).

R
Q152 The error in numerically computing the integral [ (sinx+cosx)dx using the trapezoidal re
: L

with three intevals of equal length between 0 and x is

[ME, 2016 : 2 Marks, Set-2]

Solution:

fix)

-

-
_l‘-r:gmnq.

= 1]

o

1

—

..'l": Y3
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By Trapezoidal
j[sﬂ 1+C05 x)dr = “"?-E'ﬁ +(=1)+ 2{1.366 + 0.366))
0

- X11.732) =1.1812
34 )

T &l x
J{sm; +COoEx)dx = g (8inx +COS x)dx + j (sinx + coSx)dx

| a2 |

["GU’EI+5iﬂ.T;|l;r?+[—EG5.: +5|nx:1':”
= [(0+ 1)—(=1+0]] + [(1+0)-(0+1]]

=1+1+1-1=£
Emor = Exact value - approx value = 2=1.1812=0.187

6.4.3 Truncation Error Formulae for Trapezoidal and Simpson’s Rule

Let h be the step size used in integration.
The truncation efror formula for simple trapezoidal rule with 2 pis is glven by

[

T = 17 i)

For composite trapezoidal rule with N, intervals. |
r-r‘ M

T ermen l—ﬁ”fﬁ}l !

The absolute T, bound lor simple trapezoidal rule is given by

h:il
| .
(/% P max-ﬁf"fgj‘ |
h_!
= 75 max lg) | where, %, SESx, |
For Compesite rule also similarly,
hﬂ
el e max‘--— N f"{e:)|
12
h!
— ﬁl'-.llrmx lf’“n:E,H -.-msra.nugl:ixﬁ
Tha truncation error for simple Simpson’s rule with 3 pts is given by
hE
TE = = ﬁ fN{EJ |
For composite Simpson's rule with N, intervals, 1he truncation error bound is given bry |
h*

TE-I"'""-"'I ™ _iﬁ IH{EJ NII
where, N is number of simpson's intarvals.

Since, N, = %
h (N
> Tems = ~g5l) "0
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The absolute truncation eror bayng lor simpila i, PSON'S MUl | by
IS given by,
5
iTElr-'I:l..I'l:l = rrm-.%f“[ﬁ,‘
= ﬁ Mg :lfht&}j \WEFE.IHSE,EIH

Tha absolute truncation error bound for COMposite Simpson's rule with N intervals is given by,

7.l -gﬁ_ﬁ[g]ﬂgpl . g[%] miax | #(E) |

b = Thdx

|-|5
5 T N, max | vE) | whare, %, <E<x,

inal these for FSU'H':- N =(b- alh (whers & and b are the limits of integration) and N, = N_, -1 (where
Ny, is1he number of pis used in the integration), Since T lor simple trapezoidal rule is propartional

to 1, it is a third order method. i.e. TE = O(h?). Sinca T. far | impson ' '
nt itis a fifth order method. i.a. TE = O(hY, R s propertere

important Note:

1. Trapezoidal rule gives exact results while integrating polynomials upto degres = 1.
2, Simpson's rule givas exact results while integrating polynomials upto degree = 3.

ILLUSTRATIVE EXAMPLES FROM GATE
053 A 2™ degree polynomial, 1{x) has values of 1, 4 and 15 al x = 0, 1 and 2. respectively. Tha

2
integral jf[}:,'l dx |5 10 be estmated by applying the trapezoidal rule to this data. Whal ks the
i

arror {delined as “true value - approximate valua”) in the astimate?

@ -3 ® -3
{c) O () % [CE, GATE-2006, 2 marks]
Solutlon: (&)
fix) = 1,4, 15aix =0, 1and 2 respeciively

Th:;}dx = %(1, + 21, + 1) (3 poinl Trapezoidal Ruls)

a
hera h=1

?ﬂx]dx = %{I+Ex4+15}-12

Approximate va1ueuby Trapezowdal Aule = 12
Since f{x) is second degrae polynomial, let .

fix) = 85+ 8% +8yX

oy = 1

a,+ O0+0 =
Eﬂ =
if1)
a,+4a +8; =
1 +a +8

b U

,
1
4
4
4

A |
m
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e S N
=% a,+a, =3
fi2) = 15 i)
= a,+ 2a, + da, = 15
= 1428, +48, = 15
==t 2a, +4a, = 14 i)

Solving (i) and (ija, =-1anda, = 4
: f{x) = 1- %+ 4%

£ 2 a 3 s
a 4y _ E
Now. exact value of _!f{;}d: - in-;udx )dx = [x"E+TL .=

4
Error = Exact - Approximale value = % -12= "3

Q.54 The accuracy of Simpson's rule quadrature for a step size his

fa) Q) (b} Of)
fe) O (d} OfhF) [ME, GATE-2003, 1 mark]
Solution: (c)

7
Q.55 The minimum number of equal length subintervals needed (o approximate _[:e' dx to an
1

accuracy of at least 1/3 = 10® using the trapezoidal rule is

fa) 1000e (b} 1000
(e} 100e (d) 00 [CS, GATE-2008, 2 marks]
Solution: (a)
Hara, the function being integrated is
fix) = xe*

fix) = xef+ 0" =0*(x+ 1)
f'x) = »o" + & + & = &x + 2)
Since, both e* and x are increasing funclions of x, maximum value of (£} in interval 1 sfs2

ocours atE = 2,
S, max | )| = o2+ 2) = 4e?
Truncation Emor for trapezoldal rule = TE (bound)

e

= 35 Max (&) = N,

whera N, is number of subintarvals

b-a

=
I8

; - ## «D_E
LR Tul:b:l..l'ﬂ] 12'”3'“ ll {E-:ll h
h2 r
= 5 (b-ajmax ey 1522
hé he

. 1
Mow putting Tﬂ'nn.rm = 5 % 106
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e
wa get %eﬁ’ = %;-em"'
= b = EET_H
Now ~ Numberofintervals = N= 228 0 21 _ o000

h " podre)
.56 With respect 1o the numerical evaluation of the definite integral K = _[:'x‘?r:l: wheraaand bare
given, which of the foliowing statements is/are TRUE?
() The value of K obtained using the trapezoidal ruls is always greater than or egual to the
exact value of the dafinite integral,
(1) Thevaiue of K obtained using the Simpson’s rule is always equal to the exact value of the

dafinite integral
(a) |ony {b) 1 anly
(b) Both | and |l {d) Meither ! nor I
[CS, GATE-2014 : 2 Marks, Set-3]
golutlon ; (g)

b
; 2
while computing K = | x°dx
-]
Error = Exact value — Approximate value
For trapazoidal rule

Error = ~%f"{§] x0y

Sirce h and n are always positive, sign of the ermor is controled only by the sign of F(E).
Here i{x) = ¥ 50 £(x} = 2 which is always positive. So the sign of the eor is always negative.
| e. approximate value always greater than or equal 1o 1he exact value af tha integral.

So (1) Is true.

Simitarly for Simpson's rule

: Error = nga‘”m *

! Since h and n, are always positive, sign of the error is controled only by the sign of F*(E).
| r

I

Here [{x) = x* 80 F[x) = 0.
S0 the error is always 0. 1.8, approximate value always equal io the exact value of the integral.

S0 () is true,
' Therefars both (1) and (I1) are correct

| &S NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

651 Introduction
Analytical methods of solution are applicable only 1o a limited class of differential equations. Frequsnily
flerential equations appearing in physical problems do not belong 1o any of these familiar types
el one ig obligad ta resort to numarical mathods, These methods are of even greater importance
WEN we realie that computing machines are now available which reduce the fime taken to do

kg 3
mmmMmraw.
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A number ol numerical methods are svailable for the solution of first order differentia BQuations o
torm:

Whe
dy ;
g =[x v), given yixg) =y, i
These methods vield solutions either as a power senes in x from which the values of ¥ Can be foun
by direct substitution, or as a sel of values of x and y. The mathod of Picard and Taylor serieg l:ralung
1o the former class of solutions whereas those of Euler, Runga-Kulta, Milne, Adams-Bashignn BiC,
belong to the laiter class. In these later methods, the values of y are calculated in shor Steps for
equal inervals of x and are therefore, termad as step-by-step methods.
Euler and Runge-Kutta methods are used for computing y over a limited range of x-values whereag
Milne and Adams-Bashforth method may be-applied for finding y over a wider range of x-valyeg
These |ater methods require starting values which are found by Picard's or Taylor series or Rungg
Kutta methods.
The initial condition in (1) is specified al the point x, Such problams in which all the initial condisigns
are given al the initizl point only are called initial value problems. Bul there are problems Whete
conditions are given at two or more paints. These are known as boundary value problems, In this

chapter, we shall study three methods common used for solution of firsl order differential equations
ramely,

1. Eular's Method
2. Modified Euler's Method
3. Runge-Kutta Method of Fourth Order (Classical Runge-Kutta Mathod)

6.5.2 Euler's Method

Considar the equation, dyfdx = fi{x. v) i)
guan that yix,) =Yy, Its curve of solution through Pk, y,) 18 shown In Fig. Mow we have o find fhe
ordinate of any ather paint & on this curve.
oy Truie wiliif
i ﬁn‘nr uf':ll
o Appras
<) .
_ wali of v
o b
gl
PTIIR,
Yo
1 L&, ™ X

Ko g4 g+ 2 My % i

Lat us divide LM into n sub-intervals each of width h at L, L.. ... 50 that h is quiet small. In the

imerval LL,, we approximate the curve by the tangent at P. If the ordinate through L, meets this
tangent in P,(x, + b, y,}, then

¥y = LPy= LP+ R,P,

= ¥pt+ PR tand = vy +h[?_ﬂl =Yyt h 1[3':,}. 'ﬁ"nj

Let P,Q, be the curve of solution of (i) through P, and iat its tangernt al P, meat the ardinate through
L2 In Py{x; + 2h, y,}. Then
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‘.illli 1 + ‘n:n[ﬁ.“I :n - IImI
fn EnEral wa may wrile

:ﬂmtw the ta_nga_nt In each interval, i e. by
v 0 e quigt significant, This ssquance

le S0lution. Hence there is a modification of
Modified Eulerg methad, which is mare accurale

ILLUSTRATIVE EXAMPYLES

IS small .
al lines may also deviate mnmﬁﬂrﬂbly fr‘nf.-r:l-;a;"“l
e E-u

Wl Sechion, Callad

Using Euler's mathod_ fing ana :
. PO
= H+",'E.{"Ilj',' = 'IWhEII'I}l =[], mavamﬂ1vnnnﬁiﬂm¢ﬂirrg[ux=1
Solution:
Wetaken = 10 and h = 0,1 whigh '
' 5 sulliclan .
1|:|Ih'l'||'5: UH II"'EI"I'IE" Thﬂ"'lramuﬁ E-ElElelﬂﬂ-E Erﬂﬂ”’aﬂwaﬂs

. Divan that dy/dx

P

X ¥ x4y =dyids old y « 0. ¥dy / cx} = new y
00| 100 100 10040 V1 00} = 110
Q1] 110 1.20 1104041 .20) = 1 22 ‘
02) 122 1.42 122+0.41.42) =18
03] 136 165 136+0.91.668)= 153
04| 153 1.91 1530 11.93) = 1.72
a5 172 2.2z 1.72+0,%2.22) = 1.94
06| 104 2.54 1894+0 42 54)=2.19
07| 219 289 219+0.42.69)= 2 48
08| 248 3.89 246 +0.¥3.85)= 2 81
09| 281 amn 2B1+0.13.71) =131
1.0 [T378}

Thus the required approximate value of y is 3. 18 at x = 1.0,

Obs. In this example, the true value of y from its exact solution at x = 1 is
y = 28°-%-1
2a'-1-1= 344
whereas by Euler's method y = 3.18, In the above solution, had we chosen n = 20, the accuracy
would have been considerably increased but at the expense of double the labour of computation,
Euler's mathod is no doubi vary simple, but cannot be considered as one of the best.

Example:
E'II'H'E'I'! Eﬁr__ = Y—x with initial condition y = 1atx=0;find y for x = 0.1 bj,,l' Euler's mathad,
ax Y+ u
Solution:

. b-a 0.1-0
We divide the interval (0. 0.1} into live stepsie wa taken =5 h= — = —— = 0.02.

The various calculations are arranged as follows:

~ MOy NI VL v
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old ¥ T hidy/ dx) = new y
1 0000 +0.02(1.0000} = 1.0200
1.0200 + 0,200+ 0.02(9615) = 1.0392
1.0302 +0.02928) =1 0577
1.0577 +0.05893) = 1.0756

1 ¥ E4y= m‘.llﬂ:':
Ebﬂ 1.0000 1.0000
02 | 1.0200 086815
004 | 1.0382 0.926

10677 0.893
gﬁ 10756 0.B62 1 0756 + 0.02(802) = 1.0028
0,10 | 1.0828 =

Hanca the required approximate value of y = 1.0828.

ILLUSTRATIVE EXAMPLES FROM GATE

Q.57 The crdinary differential equation

dx :
— =—3x+ 2, with x{0) = 1
p with x(0)

i o b solved using the forward Euler mathod. The Iarqasllim step that can be used o solve
the equation without making the numerical solution unstable is

o —

[EC. 2016 : 2 Marks, Set-2]

Solution:
dy
= =—E EI D.:|=1
dx x H
11 = 3H < 1. then solution of differential aquation is stable.
-1e1-3h<1
-2<-3h<0
2
Dchx 3
2
gy = El =0.66
6.53 Modified Euler's Method
In Euler's mathod ¥ioq = ¥+ (e v)
In Backward Eulersmethod v, , = v, +hilx, . ¥.,) ]

A numerncal method where y, | , appears on LHS and RHS of the iterative aquation is called an
implicit method. So Backward Euler's method is an Implicit mathod, while Euler's method is explicit
since y, , , appears only on left side of iterative equation,

In Backward Euler's method, we need to rearrange and solve (i) for y, | , before praceading further

ILLUSTRATIVE EXAMPLES

Exampla:
Using Backward Euler's Method find an Approdimata '”'ﬂ]uﬂm?ﬂﬂ'rﬂﬁpmding to x = 0.2,
b gimﬂ'lild'f.l’dx=u+yandy=1whann=u,|_;sgmgpm|.l_ﬂ_i_
Yier = '!I"L"’hﬂ““q-ylﬂ}
Yieq = ".l'|+h|:x|+1+"_."“.|]-

Scanned by CamScanner
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Y
waoe EAS
_,_,--""_'-r-_._r-_
golution:
Sohving fory,, ,we get, y,,, = ._"'”;“"-n
=

65.4 Runge-Kutta Method

Hceu Ll_y waliiovaliiivcli

Now the calculations are shown below:

1% ] Comments

(00| 100 Initial condition given
11122 _Yorhx 1+01x01_

a5 "ETIR 7

202 |1.2689 ¥z=y'1+hh“?=‘-1221+%‘1“ﬂ-2.1,2559

gp, tha approximate value of y at x = 0.2 s 1.2689,
Notice that this same problam when solved by forward Euters m

answer fory which wasy = 1:22atx=02
The advantage of Backward Euler's method is its stability. Backward Euler’s methed is mare

stahle compared to forward Euler's method,
A method is stable If the effect of any single fixed round off error s boun

the numizer of mesh points.

athod, gave a slightly diffierent

ded, iIndependent af

The Taylor's series mathod of solving differential equations numerically is restricted by he labour

involved in finding the higher order derivatives. Rowever there is a class of methods known as
kafions of higher order derivatves. These methods

Runge-Kutta methods which do not require the caleu
ht, where r differs from method to method and is

agree with Taylor's Series solution upto the terma in !
called the order of thal method. Euler’s method Modified Eulers method and Runge s meathod are the

Runge-Kutta methods of the first, second and third order raspeclively. |
The lourth-order Runge-Kutia method is most commonly used and is often referred to as Runge-

Kutta' method' o classical Runge-Kutta method.

Warking rule for finding the increment k of y coresponding to an incremant hof x by Runge-Kutta

mathod from
3_!'" = fix, y) ying) = vy i5 as follows:
®
Calculate successively
- hilx,. Yol
1 1
}l:E = hr[ﬂﬂ +§h. Yo +EH1]
lh. + 1h
Ky = M[Hn""z‘ Yot 5he
and h,‘FH{:e{ﬁh,'y,,-rku}l
1
Fll'ﬂillfmputa kK = E{k.l 'I'Ekg + 3{3 +HKyl
which glves the required approximata valug ¥, =Yg + K
(Note that k is the welghted mean of k. ks and keg). o
identical whether the differential

Obs, Ong of the acvantages of these methods (s that the operation is

quation is linear or non-linear.
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ILLUSTRATIVE EXAMPLES
Example:

Apply Runge-Kutta fourth order method to find an approximate value ol y whenx = 0.2 given
thal dyfdx = x + yand y = 1 whan x = 0.

Salution:
Hera, Xy = O.yg=1.h= 0.2, I{x,, 'g'ub =1
2 k, bl )

02x1=02

k, = h r[:, + %h. ¥ + %u,] = 0.2 x {{0.1, 1.1) = 0.2400

1 1
R, = hT(n: =, +-—|-:]
a n*E, ¥ 72

= 0.2=x K01, 1.12)
= ([0.2440

and ke = hf{x, + h oy, + k)
= 0.2 x1{D.2, 1244)
= [0.2888

k = %fk|+2k,!. b2k + Ky )

. ém_a:ﬂma.aam +0.4880 + 0.2868)

& éxﬁ A568) = 0.0428

Mo, ¥, = ¥Ypt+ K
= 1+ 02428 = 1.2428

Hence the reguired approximate value of y s 1.242E,

ILLUSTRATIVE EXAMPLES FROM GATE

(.58 Consider the first order initial value problem
Y=yp+2x-x2 y(0}=1,(0Sx<es
with exact solution y(x) =+ + &% For x = 0.1, the percentage difference between the exact
solution and the solution obtained using a single iteration of the second-order Runge-Kutta
mathod with step-size h=0. 115 _.
[EC, 2016 : 1 Mark, Sat-3]

Solution:
% = ¥+ 2x - x?
pi0) =1
DZx=es

fny)=y+2e-x*
_tnr.ll:l-_'_l,.ru='| ch=01
ky = hflgg yp) =001 + 2 x 0-0) = 0.1

S— - =y — e e e e e e — -
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K. = hfixg + 0, ¥y + k)
E U-“{.'I'ru + Hl.:l * 2':-"".3 * 1) - |;-'l!'|:l + h':r?]
=01 +0.1) + 2(0.1) - (0.1)2)

=0.129
Y= y.,+§m1+m = ‘*%:u.nﬂ-‘lﬂgl =111
Exact solution W) =%+ 8" = (GAF + & = 1.1152
Emor = 1.1152 = 1.1145 = 0.0006%
% error = 0.06%

i the effect of round off error remains bounded as | — =, with a fixed step size, then the mafhad s
said to be stable; otherwise unstable. Unstable methods will diverge away from solution and £AUE3
ﬂ'l'ﬂ"ﬂm"' o,

Using ageneral single step method equation

j'|+1=E_}| . i)
Condition for absolute slability is

lEl s 1
Lizing a test equalion ¥' = Ay

wat us find the condition for stability for Euler's mathod.
Euler's mathod equation is Vo1 =¥ +h ;. v}

= ¥+ hdy,
= [1 +hl]':.r|
How, comparing with (i) we get
E=1+hk
Condition for stabiiity if [E] <1
l'l + Fi ?.l < 1
Jeis+hd <
g0, condition for stability is
2<hih <0

ILLUSTRATIVE EXAMPLES FROM GATE

=0.25y? s lo be solved using the backward (irnplicit) Euler's

; . i dx
.50 The differential equation (dy/dX) . = 0 and with a step size of 1, Whal wikid berlie

mathod with the boundary ponditiony =18
valug of y at x = 17

: a3 CE, GATE-2006, 1 mar
{c) 2.00 (a) 2 [
Solution: (o)
dy =
Y _ posy? (y=1atx=0)
= 0.25y*
h=1

lterative equation for hackward (implicit) Euler methods for abova egqualion would be
¥ies1 ™ Yu + hf{:ﬁm 1 ?k""'}

2
Vo1 = Vet DX 0.25 Y

nea py camoscanner —
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=* DEEh?E-I'I '?..1 +I!|I|; = U
puiting k = 0inabove equation
ﬂ.EEh'y'IP—'},rl+yn = 0
since, y, = landh=1
0.25y72-y,+1 =0
1+ f1-1
= = _‘L—.— =2
"7 9%025
G y, = 2

for & continuous function estimated with h = 0.03 using the ceniral

EEAS5

d
Q.80 The errorin 5 ()

difference formula %74}14 = fxg + h};_ll[x“ =1 . 182 x 1073 The values of x, and f(x,) are
K=g

19,78 and 500.01. respectively, The comesponding arror in the central difference estimaie for

h = 0.02 is approximately

(@) 1.3x 10 (b) 3010

c) 45x 104 (d) 9.0=10“ [CE, GATE-2012, 2 marks]

Solution: (d)

Error in central difference larmula & 0(h?)

Thizs means,
amor e he

If error for h = 003is2x 107

then

Error for h = 0.02 is approximately

29107 x{gg = 9= 10

Q.81 Maich tha comrect pairs

Numerical Intagration Crder of Fitting
Schame Polynomial
P Simpson's 38 Rula 1. First
Q. Trapezoidal Rule 2. Sacond
R. Simpson's 1/3 Rule 3. Third
(a) P-2,0-1,R-3 (b) P-3,0-2,R-1
(c) P-1,0-2R-3 (d) P-3,0-1,R-2

[ME, GATE-2013, 1 Mark]
Answar: (d)

R d
Q.82 Consider an ordinary differential equation —+=4t+4. It x = x; att = 0, the increment in x

caleulated using Runge-Kulta fourth order multi-step method with a step size of At = 0.2 is
{a) 0.2 (B) 0.44
{c) 066 (d) 0.88

[ME, GATE-2014 : 2 Marks, Set-2]
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solution : (d)
oy
-a-l- = d[ + 4: F“UII:I-:I

AMt=0,x= Iy
Irraspective of vakues of x. i, x,) depends on t only,
K= hifly x)=02xxd=08

Ky = hf[ln +§Th:u +521] = hi{0.1 x, + 0.4) = 0.2(4x0.1+4)=D0.88

1 k
ky = hf[5n+ Eh-ﬁu"'—zg] = 0.2f(0.1, 5, + 0.44) = 0.2(4 xD.1+ 4) =088
k, = hf{1n+h,_m+n3] = D.2f(0.2. x, + 0.88) = D.2(4x02+4)=098

1
k = Eﬂ"r‘fﬂk: +Ek3 +k1}

1
= E[D.E+2xn.sa+ 2%0.88+0.06 =088

.63 While numearically solving the diffarential equation %’f_ + E:':!!'E =0, W) = 1 using Euler’s pradictor-
X
corrector (impraved Euler-Cauchy) with a step size of 0.2, the value of y after the first step is

(a) 1.00 (b) 1.03
o) 087 (d) 0.98
[IN, GATE-2013 : 2 marks]
Solution: {(d)
dy 2
dr+2w o
ay _
o« 2ny*
after one iterstion

F; = Yﬂ+r{_zxnﬁ]=1+ﬂ‘_2[—h?xﬂx12]=-I*EE,‘

a
i

1 .
Yo+ % (0.2)[~2%ay5 - 2% 1]

= 1+0IH2x0x 1% - (2 x 0.2 x 1)]
= 1+01[-0-04]=1-0.04 =096

Q.64 The differential equation {dx/dt) = [(1- x)T] is discretised using Euler's numerical integration
mathod with a tme step AT > 0. What is the maximum permissible vakse of AT o ensura
atability of the solution of the comasponding discrate time equation?

(@) 1 b) w2
&) = d) 2¢
[EE, GATE-2007, 2 marks]

Scanned by CamScanner
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Solution; (d)
B
Here: al
Here, iz y] =
Eules's Mathod Equation is
;';| &1 s
= I
= I|+ 1 "

For stability |1—2 <1
B o
T
Sinca, h = AT hare,
= £‘| = ﬂ P
1
= AT <

.1
Fa o

S, maximum permissible value of AT is 2t

Q.65 Match List-| with List-ll and select the correct answer using the codes given below the lists:

List-|

A. Newton-Raphson method

B. Rung-kutta method eguations

C. Simpson's Rule equations

D. Gauss elimination

Codes:

A B C D

{a) (3] 1 5 q

{b) 1 B 4 a

(c) 1 3 4 2

{d) 5] a 4 1
Solution: (c)

Q.66 Consider a diffarential equation

List-Il

Solving nonlinear equations

Solving simultaneous lingar equations
Solving ordinary differential
MNumerical integration

Interpalation

Calculation of Eigenvalues

Do b wN

[EC. GATE-2005, 2 marks]

d_z{x]—?[:ﬂ] = x with the initial condition y{0) = 0. Using
X

Euler's first order mathod with a step size of 0.1, the valus of WD.3) is

(a) 0.01
(c) 0.0631

oualiicu vy valliovaliici

ib) 0031
{d) 0.1
[EC, GATE-2010, 2 marks]

P i Wl WeEE
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oy
ax Y =% yo)=0

Blepeiza=h = g1
Euler's first arder formula is
qu.l = FI +h'1!:- .!fl|}
¥y = ?U*H{’:w:l’:.:'
HEFE. %:n,'"l'nljn:xﬂ:]:ﬂﬂ}!ﬂ
I] = ?'-D+|1=|:I+l3.'l=ﬂ'.1

n

(x, ¥} = dy =y 4x

ax
- ¥y = Yo+ hf(xg, v
= 0+01=f{0.0)
= 0401 %=(0+0)
= [
Mo, X, = U.1.',I'1n|:|
Ky = X+ Zh=04+2x01=02
-1 Yo = ¥+ hf{x, v}
= 0+01xf(01,0)=0+0.1(0.1+0) =001
Mow, X; = 0.2y, =00
¥y = My+dh=0+3x01=03
= ¥ = ¥ + hi(x, y,)

= 001 +0.1 = £{D.2. 0.01) = 0.01 +0.1 (0.2 + 0.01) = 0.031
oo 8tx, =03 y, = 0031
. Lomrect anewer is choice (b).

Q000

L e ——— R e - —————T
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Laplace Transforms

7.1 INTRODUCTION

The Laplace fransform method sobve dilferential equations and corresponding initial and boundary
value problems. The process of solution consists of three main sleps:

Ist step. The given “hard” problam is transformad inlo a "simple” equation (subsidiary equation).
2nd step. The subsidiary equation is solved by purely algebraic manipulations.

3rd step. The solution of the subsidiary equation is transformed back to obtain the solution of the
given problem,

In this way Laplace fransforms reduce the problem of solving a differential equation to an algebraic
problem. This process is made easier by tables of functions and their transforms, whose role is
sirnilar to that of integral lables in calculus

This switching from operations of calculus 1o algebraic aperations on transforms is called operational
calculus, avery importan area of apphed mathematics, and for the engineer, the Laplace fransform
method is practically the most important operation method. 1tis particularty useful in problems whera
the mechanical or electrical driving rmethod. It is particularly usaful in problems whara the mechanical
or electrical driving force has discortinuities, is impulsive oris a complicated periodic function, not
maraly & sine of cosine. Anather operational method is the Fourier transform.

The Laplace fransform also has the advantage that Il soive Initial value problems directly, without
first determining a general solution. It also solves nonhomogeneous differential equations direclly
without first solving the corresponding homogeneous equation.

System of ODES and partial differential equations can also be treated by Laplace transfomms,

7.2 DEFINITION

Let f(t) be a function of t defined for all positive values of 1. Then the Laplace transforms of 1),
dencied by L{{1)} is defined by

Lif = f e *fitiot K
provided thal the integral exists, s is a parameter which may be a real or complex number,
L{f{t)} being clearly a function of s is bnefly wntten as fis) or as Fig)
ie. LIt = F(s).
which can also be wrillen as
fty = LTis)l
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Then K1) is called the inverse Laplace transform of T(g). The symbal L. Which transforms fi1) ing

f(s). s called the Laplace transformation operator.

Example:
T {1y = 1

i) = Je* 1=

-8 s
similarly Laplace transiorms of other common functions can also ba evaluated and is shown below:

7.3 TRANSFORMS OF ELEMENTARY FUNCTIONS
The direct application of the definition gives the following formulae:

E'ﬁll: a__E[l T

1
1. L=z (& >0)
vy 2L rin-+1)
2 L{‘ ] = 5"'* ,'l'ﬁ"hﬂnrl=|:|'| T [ﬁhEMIEﬁF]
B —
3 UeT= —— (s >a)
vl A
4. Lisina = i (s <0)
g
5. L{cosal) = < o= (8 >0)
a
6. L{znhat) = " (s>]a])
5
7. Licoshat)= 5 (s> |al)

ILLUSTRATIVE EXAMPLES FROM GATE

Q.1 IfL defines the Laplace Transform of a function, L [sin (at)] will be equal to

d a
'I:'E} EE—EE [h] EEEE.?
(© s &
i iy
[CE, GATE-2003, 2 marks]
Answer; (b)
2.2 Laplace transform for the function f{x) = cogh{ax) is
d 5
la) % g () = g
a 5
fc) e (d) = e [CE, GATE-2009, 2 marks]
Solution: (b)

It s 3 standard resull that
8
Licoshat) = = g

Hlicu vy valliouval i ici



494 | Engineering Mathematics for GATE and ESE Prelims MADE Easy

Q.3 Laplace transform of the function sin ol is

mw
(a) ﬁ (L) e
i1
© o o) o7
[ME, GATE-2003, 2 maris)
Solution: (b)

L [zin @f] = ———
{ Bl g

a* "
Q.4 The function i) satisfies the differential equation F+|=ﬂ and the auxiliary conditiong

ot f
fi0)=0, -a;['l‘] = 4, The Laplace transform of 1{t) is given by

2 4

@ 0 =) e

I 2
=) = Sy (d) F

[ME, GATE-2013, 2 Marks]
Solution: ()
L[$-+f m []
Lift = Fis]

L") = s2F(s) - sfi0) - F(g) = 2Fis) — 4
| sF(s)-4+F(s) = O
(82 + 1) F(s) = 4
| d
S g +1

4
L =
“ EE+‘I

Q5 IF A is a function defined for all t 2 0, its Laplace transtorm Hs) is defined as

@ fefnat b) [Te ity

(©) [ et @ [5e=tiar

[ME, 2016 : 1 Mark, Set-1]
Solution: (b)

LRY) = [eSfinar

0
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Q8 Consider the function fix) = 248 - 3.2n tha domain [-1. 2], The global minimum of §x) s

Solutfion:
fx) = 23 -3 in[-1, 2}
Flx) = 6 - By
Flx) = 0
B - By = O
E.:E[I - 1] =0
x=101
Mix)=12x-8
F0) = <6 Max
F1)=8 Min

G.Minmais-Satr=1

Q.7 Laplace transform of cos (wd) is

[ME, 2016 : 2 Marks, Set.1]

¥=-1 R-1)=-5G. Min,
r=2 f2)=4
x=0 f0) =0

=1 K1) ==

5
a W
@) s+ o? (o) 5" +w
g
e & - w® @ szfmz
[ME, 2018 : 1 Mark, Set-2)
Solution: (a)
8
L =
[COs wi) 59 |
Q.8 Solutions of Laplace's equation having continuous second-order partial defivatives are called
{8) biharmonic functions (b} harmonic functions
(c} conjugate harmonic functions {d) error functions

Solution: (b)
Solution of laplace equation having continuous

Second order partial derivating

V=0
o o
e

S ¢ is harmonic function.
7.4 PROPERTIES OF LAPLACETRANSFORMS

74.1 Linearity Property

I &, b, ¢ be any constants and f, g, h any functions of t, then

[ME, 2016 : 1 Mark, Set-3]

L[af(t) + bg(t) — ch(t)] = a L{f()} + bL{g(t)] - cLih(t)}

Scanned by CamScanner



496 | Engineering Mathematics for GATE and ESE Prelims MADE Eagy

7.42 FirstShifting Property
WL = T(g), then

Liea®(t)} = Tiz-a)
Application of thie propety leads us to the following useful resulls:

1. Le™ = 5—15 | i ;

2. Lig" ") = ts._-I:;}“ﬂ {n is positive integer) [.'Ltf“}= En:!?_
il h ]

3 Lie™sin bt = ﬁ s ?Th?:

p ! o,
& Uibisins m [ L{cos bt} 52; .-
5. L{e™ sinh bt} = fs—a+~b’ [ HERE m_
: e o 5
6. Lo cosnby= 228 R

where in each cases > a.
7.4.3 Change of Scale Property
1
WL € ()} = Tis). then Lif{at)] = 51[5]

Proot: Liffa) = [Te*iatht

lal=u
- Ee"‘*faﬂu:l.duf a E dt = dufa
- et = T,
7.4.4 Existence Conditions

L'e"‘-[{i}l:jt exists if Ee‘ﬂr{tht can aciually be evaluated and its imit as A — = exisis, Otherwise

we may use the following thearem:

If it} is continuous and IILI le"™(t)| is finite; then the Laplace transform of f{t), |.e. J; & {1t exists

fors=a.
It should however, be noted that the above conditions are sufficient rather than necessary,

For example, L(/+/T) exists, though V<t is infinite at t = 0. Similarly a function 1(t) for which

Lt [e™*'f{t)] is finite and having a finite discontinuity will have a Laplace transtorm for s > &,

—
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ILLUSTRATIVE EXAMPLES FROM GATE

Tha laplaca tranaform of & cosa(41) is

Q.9 Laplace ransform of coswt) is g 8
=2 5+ 2
® ta-2716 © s=2F <16
e B+2

@ GraFeie

[ME, GATE-2014 : 1 Mark, Set-1]

Bl ter2f+186

Solution : (d)
i 5+
Lie® coa bl) = {—$+2]2 T bE
A=-Z,b=4
+a
Herteos (40 = o 76

Q.10 The Laplace transform of &* where { = /5, i8

§=5i g+ 5;
L e L B g
s+ 5 5—5j
©) 35 @ Fos
[ME, GATE-2015 : 1 Mark, Sat-2]
Solution: (b)
& m cos 5t + i sin 5t
5 ] 5+ 5§
i = =
e = o s = Fazs
Q.11 Let X(5) » s> ba the Laplace Transform of a signal x(t). Then, x(0*) is
5 +105+ 21
{g) O L) 3
c) S ) 21 [EE, GATE-2014 : 1 Mark, Set-1)
Solution ; (b)
Given, X(s) = [Ef-"“—"ﬁ]
g° + 108 + 21

Lising initial value theorem,
x0*) = lim [s¥{s]]

5
. 35 + 5) ) 3+ = 3

ot = fim |25+ 8 TR - RB

#O%) EE".L!H.:EJ,E]','_."“. 0, 2|1

1+?+—

]
Q.12 With initial values y(0) = y'[0) = 1, the solution of the differential aquation

o
m_§+4$+4;. =0 gtx=1ig . [EC, GATE-2014 : 2 Marks, Sat-4)
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Solution -
Girven
il = yi(0) =1

dy | ddy

o2 T T =0
Taking the Laplace franstorm of equabion (1}, we get
s¥¥(s) - sYI0) - y(0) + 4]sY(s) - w(D)] + 4¥(s} =0

[5% + 45 + 4]¥(8) = sY(0) y'(0) + dy(D)
is2+ds+ 4]¥(s)=5+14+4

A1)

Yg)= 8*5 _G+5 1 3
(8" +ds+4)  (s5+2F  (5+42) (s+2)
ylx) = &% + Ix e
yix)=e '+ 3 =077
Q.12 The Laplace Transiorm of 6 = &' sin(50) W fis
= 5
(3l ——
) Fasem e
g5=72 g
s? _45+20 d) N [EE, 2016 : 1 Mﬂ.rk,sq'[.'.'l
Solution: (a)

aly=1

()

Laplace transform ol sin 5 wt) — _7'_5“_
5 +25
E

e sin&! uit) — 2 = -
(62" +25 5 -45+29

7.4.5 Transforms of Derivatives
1,

It (1) be continuous and LIt = HE) then
LIF(tY) = sf{s)-Ho)
I (1) and its first (n = 1} derivatives be continuous. then
LI = ="Te)- 8™ '00)-s™2F(0) - ... ITHD)

7.4.5.1 Differential Equations, Initial Value Problems

We shall now discuss how the Laplace transiorm method solved differential equations.
We begin with an initial value problem.

y" +ay + by = nt), -
A0 = Ky yi0) =K,

with constant a and b. Here {r) is the input (griving force) applied to the mechanical system and y(1)
s the output (response of the system). In Laplace’s method we do three steps.

18t Step: Taking Laplace wanstorm of LHS and RHS of 1 we get
Liy") +ally})+bLly) = Lir.

2.

Now substituting L(y") = sLiy)~1(0] and [Liy") = €% Liy) - =i{0) - P[0}, we get
[2Liy) = sy(D) — y'(C)] + alsLiy) - y(0)] + by = L(1)
Mow writing ¥ = Liy) and R = L{r]. This gives
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[s7¥(s) - sy(0) - ¥(0)] + als¥(s)- ¥iO)] + by = R(s) =
This Is called the subsidiary equation. Collecting Y-
(5" + as + biY(s) = (g + aj v

2nd Step: We solve the subsidia
the so-Called transter function

lerms. we have

o) + () Ris)

TV equation algebraically for v Division by 52
_‘_'_-—\_._'a

1

| 3 [
32 + 4%

gives the solution "'ﬂ{

T 88+ Dand uga o

| Y(g) = (s + aly(0) 5 y10)]Qis) + Ris) Ofs) (i)
IFy(0) = ¥{(Q) = O, this is simply ¥ = RQ; thus O is the quatient ”

a= 1 . Uoutpuy)
R Liinput

and this explains the name of .
rit} or on the initial conditions.
3rd Stap. We raduea (i) (usually b

¥ partial Iractions, as in caleulus) to a sum of lerms whose Enve
rse
can be found from the table, 5o that the sOlution y(1) = L 'Y} ol (i) is obiained

Example 1:
Initial problam: Explanation of the basic steps
. Sahve Y=y = Y0l =1 viD)= 1.
| Solution. 1st Stap.
| By taking Laplace transiom of LHS and AHS of ¥' -y =t weget the following subsidiary equalion
| SELIY) - sY(0) - y(0) - Liy) = 1/e2 hus (82~ 1)Y =54 1 4 1/s2
| whare Y = L{y)
| 2nd Step. The ransfer function isQ = 1/s? - 1), and
"l""r{5+'f]ﬂ+izﬂ" 5+1 1 1 1 'I:}
g
3rd Step. From this expression for ¥, wa gbitain the

W) = L) = 1 [;1—1]+L-1{T"_1}~L-‘{.E.}} =&+ sinh -t

5
-l 88 3el-etn
2
: The diagram in Fig. below summarizes our approach.
I I-5pace B-hpace
Eh:n_prm'ullam Subsidiary squaton
=1 e
| ﬂ%’:ﬂ (8- ¥ =5+ 1"
|
Solution of given probiem Solulicn of subsidiary eguatian
[ e, O
I- '.'ﬂ'_]-l.ltl-ﬁlﬁt-t g5-1 FT‘I F
Lasfilacs trarmsiormn method

hﬂ'ﬂeu vy caliovalliiici
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Comparison with the usual method
The problem can also be solvad b

y the usual mathad without Lsing Lap

lace transforms as shown

. i y0) = 1,¥(0) = 1
{Di—‘lhl' =] D
Auxiliary equation
o -1 =0
D+ 1)i0=-1) = 0
m, = 1 and "“a"“ ,
So complemantary function is y = G, 8" 40,87
Mow particular integral
Bl = ——i)

So complete solution is

Putting initial conditions y(0)

e 1

S0C5 8
which is exactly the same sclution

Note: Laplace transform methad has abtained the solution directly without

€4, Gy BIC,

7.4.6 Transforms of Integrals

L, m Emﬂﬂ.z:--l
2

-1
{1+ D2-pf o p=-t+0-0---=-

c,8 + 8"
cel-cye”

- ] E.I'ld""iﬂ}:".wﬂg&‘
Gy +Cg = tandc,-c, =2

2

1 ] 1 ] -1
—_— =— N TR | LR - R |
e EB t El! )

as obtained by Laplace transform method.

any evaluation ol constants

If Lif()} = Tis), then L[I[:f{u}du]ngT{sj

ILLUSTRATIVE EXAMPLES FROM GATE

.14 If F{s) is the Laplace transform of function I (1), then Laplace ransform of If{t}dt i5
a

(1) -;ﬂs}- ()]
(d) [Fis)ds

(a) &F{BJ

() =F(s)-f(0)
[ME, GATE-2007, 2 marks]

Solution: (a)
L[JI...JF{{};H“ - e
o0 D ] g
In this problem mo=
: 1.4
S, L[{f{-:}d't_ = _Fie)
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e
747 Multiplication Byt"
L
if Lf(0 = fs). then Lt = =1 E;,;ETEE}]. where n=1,2 3.,

7.4.8 Division Byt

If LifEe)) = F(s). then L{;f{l]} = J:Hs}ds
provided the integral axists.
2.5 EVALUATION OF INTEGRALS BY LAPLACETRANSFORMS

ILLUSTRATIVE EXAMPLES
Example:
Evaluate
- = 5in mt g’ sin |
(&) jnm sin t it (b) jn it () L{Iﬂ : dl}
Solution:
ia) L“te'z‘mmm u L"a‘dt_tsinl}tlt where 5 = 2
= L (tsin i}, by dafinilion.
(-1 d 1 25 _ 2x2 =i
> ds sh:] (s2+1F (2+7F 25
i) Sinca, Lisinmt) = mfis® + m®) = f(s), say
gin mt - _e_mds_ | _ 18 T . 8
([H5) - Lo =t = § - 3
sin mt T o B rn'r
Mowsince, L I—t-—) = J'a"sm
1]
T.ogsinmt . ® &
a[a : dl = > tan™’ =
MNow, Lt tan~Ys/m) = Qilm>0ornifm=<0
s=:0

Thus taking limits as s — 0, we get

_[—-——dt = = HM}DW—E ifm <0

- ) =
{c} Since, L[Em] = ’Eff_‘=1an"$=-2-4!an"sncnr's.

i EIM } = cot (s = 1), by shifling property

Thus, L[j i"{"_ ] = gm-t{s—i}

AL S A SRR A S LA 4
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Example:
Evaluste ] 12008 Eﬂ-Si::lﬂ ol
Salution:
Since lunction is even funclion 50,
1= E_I_Iacc:szm 2o o
- %T[@{ﬂ]ut [Mote: 2cosCsinD = $in(C + D) + sinf(C - D)
4]

ILLUSTRATIVE EXAMPLES FROM GATE

gint

1,15 Evaluais I—d:
il

(a) =

(c) E

Solution: (b)

Bince,

MNow Lt tan™

E—+0

ar by Definition,

I

{B) 5

@ %

[CE, GATE-2007, 2 marks]
{sinml) = m = {is}, say.
ginmi 7 T mds g
L[—] = fisyds = =| '1—1—
7 {ES}S '!:E?HTI'E fan .
]9"‘ _LLLLL= % tant =

5
‘[ﬁ] ~0ifm=0ormitm <0,

Thus taking limits as 5 — 0, we get

sin mi T X
—gt = — ifm il
i‘ " 5 =0or 5 il m< 0.

In this problem m = 1 which i = 0 therefore the answer is &
2
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7.6 INVERSE TRANSFORMS —METHOD OF PARTIAL FRACTIONS

Haing found the Laplace Translorms of a few funclions, let Lis now determing he inverse traneforme
of given functicns of 5. We have seen shat L|{fit}} in each case, is a rational algebraic funclion. Hence
o dind Ih@ inverse translorms, we firs! express the given function of s inlo partal ractions which will,

than, be racognizable as one of the fallawing standard forms:

| L"[Sl]ﬂ 2 L'E_ﬁ]= :

g L':si’]={;:ﬁ!'”=1'2' P * L'Ifs—ia]"]ﬁmi-ml!

5 L"'ﬁ-f;]:alsrnm " e ﬁg]wuﬁat

7. L ’?j_af]=alﬁmat 8 L"E,j—f]nmshai

] L":{E_EJL-FE?]-%E“’.QHN 10. L_1_$%]_E&H:I?]=Emmht

1. L"}-ﬁ;ﬁ]:é!sinm 2. L-Ij[s_ﬂullazf]-E;.‘,{Eiﬂﬂt—mﬂﬂﬁﬂ”

Al thase resulis need io be memaorised, Tharesults (1) 1o 10) follow at once rom their cormasaonding
results in iransforms of elementary functions and properties of Laplace transfomns. Results (11) and

(12) can be proved,
Wote on Partial Fractions:

To resodve a given fraction into partial fractions, we first lactorise the dencminator info real faclors
Thesa will be sither linear or guadralic, and some factors repeated. We know from algebra that a

proper fraction can be resolved into a sum of partial fractions such that
1. to a non-repeated linear factor 5 - a in the denominator corresponds a partial fraction of the

form Als — a).
2 loarepeatadlinear factor {s-a) in the denominator corresponds the sum of r partial fractions of

A A A
the form — + ——i—d —E — 4 4 —
-8 (s-af (s-af (s-a)f
to a non-repeated quadratic factor {s° + as + b} in the denominator, corresponds a partial fraction

As+B
af the form w———.
g +as+b

to & repeated quadratic factor (s* + as + b in the denominator, corresponds the sum of r partial

As+B, As5+B, _— As+

Iractions of the form e + . T ke Feasrb)
Then we have to determine the unknown constanis A, A,, B, etc.
inall oiher cases, equate the given fraction 10 8 sum of suitable partial fractions in accordance with
1l 4 above, having faund the partial fractions comasponding to the non-repeatad linear factors by
the above rule. Than multiply both sides by the denominatar of the given fraction and eguata the
coefficients of like powers of s or substitute convenient numerical values of s on both sides. Finaly
solve the simplest of the resulting equations to find the unknown constants.,

h—-—
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ILLUSTRATIVE EXAMPLES FROM GATE

Q.18 The inverse Laplace transformof — ' is

(% +3)
(@ 1+¢g by 1-a
(e 1-g dy 1 +e!
Solution: (c) S i
3 1 _
. [;iﬂ] =7
LKA NI .
e sis+1) = s+1
L'{ 1 ]- -[1 e
5§ +5 - 5] L s+ 1
— " =] -egt [Using standard formuiag]
1
L E] e 1
L-T [_1.,] it ﬂ—ﬂ-l
S4@
- 1
v [E—a] =

Q.17 The Laplace transtorm of a function f(t) is

. Thia function i) is

B {s+ﬂ
(8) t—1 4 b t+1+e”
(e} -1+ @ (d) 2t+ e
Soridion: {&d [ME. GATE-2010, 2 marks|
el
a+1}
1 ) g
55+ 1) ; 2 s+l
- As{s_-i-ﬂ+5{5+‘|}+[:{sz‘.|
s°(s+1) s°(g+ 1)
Matching coefficient of s, s and constant in numerator we get,
A+C =0 (i
A+B =0 .“[ii:::
: B=1 .. (i)
Solvingwe getA=-1B8=1,C=1
. e o N
'I S0, K = L1[—E—+F+a+1]-—1+t+a"'-t—1+9"

\
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Q.18 The inverse Laplace rranstorm of the function Fis) =

fa) f{t) =sint
(c) Ht)=e"
Solution: (d)
Fis) =
= Als + 1} + B{g) =1
Put o
= A =
and 5 -
= ] B =
So Fis) =
e L) =
lf[] =
s 35+ 1
A ' :
G IE TR L:' +45" +{K - 3!5] ;
(a) 1
(e} 3
Solution: (d)
Iim Kt} =
T e =
Given thal, Fis) =
1Il_'r'_|_|{|;| =
= |im s a8 ¥ | = 1
50 | 5% +45° + (K - 3)s

= lim 4 ] .
s~0|5° + 45 + (K - 3)
1

=3 F-'._AS -
=4 K=—3 =
=5 K =

7.7 UNITSTEP FUNCTION

1
s(s+1)
(b) fit) = e’ sint
d) ft)=1-@"

IS given by

[ME, GATE-2012, 2 marks]

) i =E+ B =M5+1]+E{s:|
sie+?) 5 sa+1 s{s+1)
0
1
-1

1

1__1

5 S5+1

L-FEFEE]] - Bix - g

1-gf

!ti_mrl:t]=1,1hmﬂ1&ualuenfﬂis
by 2
(d) 4

[EC. GATE-2010, 2 marks]

fim sF({s)
&=

ds +1
=
5 + 457 + (K - 3)s
1

At times, we come across such fractions of which the inverse transform i

cannot be getermined from the formulae so far derived. In order to cover

such cases, we introduce the unit step function (or Heaviside's unit Ly —
funetion®). E

Det. The unit step function uit - a) is defined as follows ; BT
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Ofort<a
uft-a) = [Hnrl za
where a is always positive.
7.7.1  Transform of Unit Function
Lifug-a)) = [, & Sult-aldt
. T
= [le® 0dt+ [Jo 1dt =0+ 75
Thus, Liuft-a)| = e
0 fort<0
The product fitjult-a) = [T{t] -

The function it - a) . u{t - a) represents the graph f{t) shifted through a distance a to the right and is
of epecial mportance.

ILLUSTRATIVE EXAMPLES FROM GATE

g fort<a _
Q.20 A delayed unit step function is defined as u (t-a) = {'. iot e Its Laplace transform is
a""‘l
(a8) ae™ (B .
= gt
o ~— (o) =
[ME, GATE-2004, 2 marks]
Solution: (d)
LiU(-a)) = [e¥Ut-adt
0
a8 - - e g 98
= iﬁl"g 0dt + ‘!E"“ 1-dt =0+ iE'E"EH = [“_—91[ = 5

0.21 Laplace transform of the function Af) is given by As) = LI = f;m}a-“ar. Laplace

transtorm of the funclion shawn below is given by

An
b
1 [}
gt j-g7%
B — )
E - EE_QI '1 - EEH-!‘
(c) z id) .

[ME, GATE-2015 ; 2 Marks, Sat-3]

|

woualditieu Ll‘y el ovaltiilivi



MADE EASY

Laplace Transforms | 507

golution: (c)

i -
As) = [Tf(t)e ™ at = ﬂfza-f'dn !ﬁ-e-ﬂm

o o i ~ 31—9'5;12_25-1
E[ -EL_—_S[E -1 =2 E
on Data Questions 22 and 23
Given (1) and 9(1) as shown bekow:
bt ol g
. I 1o
¢ ! 2 0 1 5 A

Q.22 g(t) can be axpreéssed as

(8) o(t) = f(2t-3)

o st)-(a-3)

(b) gm=f[$—3]

b |
@ alt)= '[5 3 5]
[EE, GATE-2010, 2 marks]

Solution: (d)
We nead g(3) = fO)and g(5) = f{1)
Only choice (d) satisfies both these conditions as sean below:
Choice (d) is 3 = ;(% —%1
3 3
3 = I{E_EJ = f{0)
5 3
and o = 1{3-3) =1
(.23 The Laplace transform of git) is
VEome. o 1 4
{a) E{EH _EﬁsJ ib) E{E-ﬁs = 1-:}
s 1
(c) --E—{1 -%) (d) ;{&""’ ~e*)
[EE, GATE-2010, 2 marks]
Solution: (c)
By definition of Laplace transform,
LI = [ e fit)dt
L) = [Ce® fdt+ e ft)at + [Te fft) o

R LS AR A AR AL LI ]

I;e"' .0.dt + I:e"‘ .ot 4 Ee"“ 0.dt

5
[_ﬂjL ’ -[E—Eu_aﬂh]—ﬂ—a N aal
8 B D T

(1=
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7.8 SECONDSHIFTING PROPERTY

I L) = Tis). then
LIE —a) = ult - a8)) = & *1(s)
Proot: LIft - 8) = uft —a)] = j:'l'r-:-"'f{l ajult - ajdt
= [l Ht-a)0)di [ et a)d [Putt-a =y

J;E. 5'“‘a’f[u}ch = E-a.aJ'E‘I"E--Ethu}ﬁu = E-Mﬂ'g]

7.9 UNITIMPULSE FUNCTION T

Theideaof a very large torce acting for a very shor time  of frequent occurrence
Inmechanics. To deal with such and similar ideas. we introduca the unit mpulse
function (also called Dirac deita function).

Thus unit impulse function is cansiderad as the limiting form of the function
{Fig. above)

aoft-a) = e, aslsa+e
= 0, ctherwise
a5 £ = 0. It is clear from figure that as £ — 0, the height of the strip increases indafinitely and the
width decreases in such a way that is ares is always unity
Thus the unitimpulse function 8(1 - a) is defined as follows:

B(l-a) = e hort=a
=0 fort=a
such that ]u'ﬁn-a]m ] fa=0)

As an illustration, a load w, acling at the paint x = & of a beam may be considered as the lirmiting
case of uniform loading wfE per unit iength aver the portion of the beam betweenx = sand s =g+ &

Thus
wix) = wle a<x<ca+re
= [ olnerase
e wix) = W bix+a)

7.9.1 Transform of Unit iImpulse Function
IF fit) be a function of t continuous att = 1. then

[, fnBsit—a)-ct
by Mean value theorem for integrals.
As e - 0, we get _[;1[t]ﬁ-[t ~ @it f(a)

In particular, putting f{1) = & in above integral

BrE 1 1
L - 2ot = (a+e—ali(n). . = ) where a<n <ase

we have jn'a‘" Bt —ajdt = o=
Now LHS is nothing but L|&(t — a))
: Lib(t-a)] = e
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ILLUSTRATIVE EXAMPLES FROM GATE

Q.24 A solution for the differential equation (1) + 2x(t) = &) with initial condition x(0-) = Dis

{@) e ult) {b) & ull)
i) etull) fel) & ult)
soluthon: (8)

x(1)+2x(t) = 8(1)

Taking L.T. on both sides
gX[s] —»(0) + 2X(s) = 1

Xsifs+2] = 1
|
e = g5+
xit) = e ull)

(.25 Consider the differential equation
d*vit) . dy(l) i .
i +2 at + y(1) = B(t) with

dy

tl|iq=—2 and
‘!"“||—-:| L dtheq

=3

dy|
| The nuemerical value of Elt : i5

| (a) -2 (b} -1
| c) O (d) 1
| Solution: (d)

taking Lapiace fransform on both the sides we have
s*Y(s)+ 25+ 28Y(s) + 4 + ¥() = 1
(8% + 28+ 1) ¥(8) = — (26 + 3)

|
|
| _ —i2s+3)
i i) = g+ 1
| 2 1
| CER ]
l o Y{t) = —[2e7 + to7uit)
ay .. T
e — [2e7 e et uft)
dv|
%lun:m ® =il

[EC, GATE-2006, 1 mark]

[EC, IN GATE-2012, 2 marks]
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Q.26 Consider & causal LTI syslem characterized by differential equalion 1:-{-'-’ + -—-}"{II 3x(1). The
respanss of the system to the inpul {f) = 39 u(1), where ({) denntes the unil gtep function, i
() 8 ulf) (b} 9™ uf
(c) 9™ un-6e™ Ul (d} 54 &% (- 54 ™ u(n)
[EE, 2016 : 1 Mark, Sat.2]
Solution: (d)
The differantial equation,
dyif) 1
Ty =23al
So, s¥(s)+ 2¥is) = 3Ms)
Wap = 2 xt::]
(s+2)
g
Hls) " 1]
3
3] 54 54
> AT (D) )
[s+3)(e+g) =*a) (o3
o0 W = (5de"'® - 5de~13) )

7.10 PERIODICFUNCTIONS
IFfit) is & periodic function with period T. L.e. fit + T) = K1), then

Jo=™ i
LI = e

Example:
If ft) = F'm f{tt e Kt} is periodic function with lime period 2x. Determine the Laplace
transform of f{t).
Solution:
Laplamtransfmnm p-erlm:lic function
LI} = 1—~T Ia"“ ftlt=—— je sintal
S S Lﬂﬂ—ﬁ-ainlﬂmst‘,l ‘
1-a" | 5% 41
" 1 . G ¢ 1 f1+a™™) 1
Tmet [f41 41| E+IN- 2126 @+ 1(-07)

0020
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Fourier Series

INTRODUCTION
Fourier Safias is an appraximation process where any general (periodic o apenadic) signal is expressad
as sum of harmonically related sinusoids. It gives us frequency domain representation.

If the signal is perodic Fourier series represants the signal in the antire intarval (—=, =), 1.8. Fouriar
sarigs can be generalized lor penodic signals onty.

Definition
Suppose fis a pisceawise continuous periodic function of period 2L, then fhas a Fourier saries

reprasentation

fx) = E [a n.:r_'ns— + b, smﬂ'--:ir

Whers the coefficiants a's and b's are givan by the Euler-Fourier formulas:

L
g e 1 ffmcmﬂrfﬁd;, n=0,1,23..
L5 L
15 X
o s =123 .
b, = i Jll-ft.:}sm T dx, n

8.1 DRICHILET'S CONDITIONS
The sufficient condition for the convergence of a Fourier seres are called Drichilet’s conditions.

1 flx) iz periodic, single valued and finite
2. fix) has afinite number of finite discontinuities in any one perind
3. f{x) has a finite number of maxima and minima.

8.1.1 Fourier Cosine and Sine Serles
If fis an even periodic function of period 2L, then ils Founer series contains only cosine (include,
possibly, the constant term) terme. It will not have any sine term. That is, its Fourier senies is of the
form

nmx

fix) = Eﬂ+ Eaﬂcuﬁ i
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itz Fourier coefficients are datermned by
2 eE =0,1.23
a, = Iju'.f{,nr]c:ns - dr, n=0123
b, = 0, w1, 23,

It fis an ocdd periodic function of period 2L, then its Fourier Sernes containg onky sine 1erms, It will ng
have any cosine term. That is, ite Fourier series is of the form

fix) = 3 b, sin 2t
I = L
| Its Fewrier coafficlents ars determined by
| a_=0, n=0,1,2.3, ..

jf[ﬂlﬁll'l—dt ned 1,2 3, ..

ILLUSTRATIVE EXAMPLES

Exampla:
Find a Fourier series for f(x) = x, -2 < x < 2, f{x + 4) = f(x)

2LV S,
ek PR T

First nota that T= 2L = 4, hence L = 2
The constant term i one half of &,

1
Ay EIILI:_I}W% T d.r:i
The rest of the cosine coefficients, forn= 1.2, 3 .....am

[ T x 1 T
2

2 2
=7 IF[:ﬁcus—d: = J' roos X oy
e L -3

7
2x . rmx
—Bin— == AR
km 3 ’: jslﬂ 3 rj_._r]

e

Mt | i
3
]
:'r'ﬂ‘
b ¥

1]
[ —
: jam ]
5
Ex
"

g
El
i
=
+

A

e ¥
0
2
F]

P
- |
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-
Henea. thera is no non-2era cosine coalficient for this function, That is, s Fourier sanes containg
na cosine terms al all. (We shall see the significance of this facl a little later)

The sing coalficients, forn= 1,2 3, ..., are

at

15 m 1% Pt 3
b = E II{I}EFHT{’T:E jl,'l EII'I-—J-.—EI'J.

| =-2x g 43
= | =——— 05
2| nn Z

1] =2« s 4 . nEx

: ﬁ[ﬁ‘“’"'z— T H

= ll[:ﬂcuﬂnn}—ﬂ]al-icmi—nﬂ—nﬂ
el L i

::l'{nns-:m] +cos{m)| = % cos{nm)

4
s r-_J'Er n -Eﬂd Z {1}"|+1d
— | 1= BVERN
nn
_A S
| Theralore, flv) = :;1 —— sin—
Example:
Find a Fourier series for fix) = x, 0 <x < 4. f{x + 4) = f{x). How will it be diflerent from tha series
in the previous exampla™
Solution:
i
= TP o M T
& = E!xdx—— 3], 415 =4
14 max . 1|2x . nex 4 i'ri'.'.'rl'I
Forn=1,2,3, .. a,= Eg.fma—-i—u‘ o et b Ll lu]
= Mfo+-2, cos2nm |-[0+—sscosio) || =0
2 e r
1% . A My 4 .J'I'.l:.'rl'lI
by, = E!m”"ﬁ"m"'ﬁ[ n“.f.:ﬂ-s > +n21:'35"1 5 |.;.]
11{ -8 —i
= =|f— -0 ={0-0||=—
El[mcna{a’m 0y - ]l]] =
= fﬁ'—+i a,{:us-nff-+q.,5hE =E+j y Lgin 2
Congacumnty =™ A WS L m=n 2
! Comment: Just because a Fourier series could have irfinitely many (non-zero) terms does not

mean that it will always have that many terms. If a periodic function fcan be expressed by
finitely many terms normally found in a Fourier series, then the expression must be the Fuufuer
saries of £ (This is analogous to the fact that the Maclaurin's saries of any polynomial function
is just the potynomial itself, which is a sum of finitely many powers of x.)

-b'bal Hicu vy valiiouvaliici
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Example; The Fourler series (period 2x) représenting
flx) =5 + cosidy) - sin(Sx) is just Nx) = 5 + cosldx) - sin{Sx).

Exampla: The Fourier saries (pariod 2n) representing fx) = Booslx] 8Nz ) is not exactly jigay
as given, since tha product cos(x }is nol alerm in a Fourier series representation. Howaver, ywe
can use the double-angle formula of sine 1o obtain the result: Goos{x)sin(x ) = 3sin{2y),
Conseguently, the Fourier series is fix) = 3sm(2x).

B.1.2 The Cosine and 5ine Serles Extensions

Il fand " are placewise cominuous functions delined on the interval 0 < 1< L, then fcan be exlendar
into.an even penodic functon, F, of pariod 2L, such that f{x]} = Flx) on the interval [0, L], and whoge
Fourler series is, Iherefore, a cosine series. Similarly, fcan be extended into an odd periodic unctian
of period 20, such that f(x) = Fix) on the interval (0, L), and whose Fourier sanes is, theralors, a sing
series. The process thal such extensions are obtained is often called cosine sing half-range
ExXpansons

E"f"ﬂ*l'l (cosine series) extension of f{x)

Given fix) defined on [0, L]. Its even extension of period 2L is

Fls) = {ﬂr] Dsxsl

F =
fl-x) —L<xe0 bt 2kl = )

Where,_ Fla) = %0 4 E a, l‘.‘ﬂE— such that
L
a = %{F[;!cnﬁﬂfid,{ n=0,13....
b, =0, n=1223, .
Cdd (sine series) extension of f(x)
Given f{x) defined on [0, L]. Its odd exiension of pengd 2L is
Kx) QOexc<l
Fixl=4 O ¥=01 Fix+2L) = Flx)
—I'I:—_\':I. =l g U
Where, Fix) = E bycos—=,  such that
a =10, n=01273, ..
by 2 LﬂstinE"iu
= Ll T—0x, A=0:13....
ILLUSTRATIVE EXAMPLES

Example:

Letfiz) = x, 0=x < 2. Fnd its cogine and sina sones extensions of pariod 4.
Solution:

Cosine series; firy= =2 F 1 _pogl20-T=s

ﬂaﬂlﬂﬂn_ﬂ E
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Sine saras; fx) =

Y

= 41
.
T L

ILLUSTRATIVE EXAMPLES FROM GATE

Q.1 The Fourer seres of the funclion,
flx} =0, -n<rsl

=f = x, O<ren
niheinterval[-r xis

ﬁ;}_ﬁ [EW\ '305-3\ Ilsm: sindx 511133;+

The convergence of the above Fourier series al x = 0 gives

i IZ - a1 7

B 5 =X

@ 273 ) L=
o _1'___ _ n_é - {___1}!141 r

© Sen-7"F® @ EeT=7

[CE, 2016 : 1 Mark, Set-11]

Solution: (c)
The function is £x} =0
-p<y=0
=p-r0<xex
And Fourier series is

m E[G{Jﬁr cosdx _ cosSr '! [sin:_sin?.r+sin3;+

Ml=3"2lF T F & i N s -0
At x = 0, (a point of discortinuity), the fowrier senies converges to E[ {{]'1'] * f{ﬂ* ]I]

where {0r) = I"'_'E{ﬂ-xi'ﬂt
Hence, eq. (1), we gel

2 SN AT Il
= 13 5 g
00
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Second Order Linear Partial
Differential Equations

| INTRODUCTION

We are about io study a simple type ol partial differential equations (PDEs): the second order linear
PDEs. Recall that a partial differential equalion is any differential eguation that containg two or more
independent varables, Therafore the derivative(s) in the equalion are partial derivatives. We will
examine the simplest case of equations with 2 independent variables. A few sacond order lingar
PDEs in 2 variables are:

a’u, = u {one-dimensional heat conduction edguaton)
a2 U, = u, [ora-dimensional wave eguaton)
U+, = 0 {rwo-dimensional heal conduction eguation)

9.1 CLASSIFICATION OF SECOND ORDER LINEAR PDEs

Caonsidaer the general form of a second order linear partial differential equation in 2 variables with
corstant coefiigients:

au, + bu + o+ du + e+ f =gl y)
For the equation to be of second order, a, b, and & cannol all be zero. Definen its discreminarnt to be
b? - 4ac The properties and behaviour of its solution are largaly depandent of its type, as classified

below,
It &* - 4ac =0, ihen the equation is called hyparbolic. The wave equation 1s one such example
It b¥ - 4ac = 0, than the equation is callad parabolic. The heat conduction equation is one
such axample,
If &7 - 4ac < 0, then the equation is called elliptic. The Lapiace equation is ane such example
Example:
Considar the ong-dimensional damped wave aquation Bu =y, + 6y,
Solution:
It can be rewritten as: Bu,, - U, - Bu. = 0. It has coefficients a=9. b= 0, and c=-1. It

discriminant is 3 = 0. Theralore, the equation is hyperbolic.

L
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9.2 UNDAMPED ONE-DIMENSIONAL WAVE EQUATION: VIBRATIONS OF AN ELASTIC STRING
consider a pieca of thin fiexible string of length L. of negliaible weighl. Suppose the two ends of the
siring e firmly secured ("clamped”) al some suppors 50 thaxy will not mowe., Assumie The sel-up has
no damping . Then, the vertical displacemant of the siring, 0 < « < L, and at any lime (> 0, is given
by the displacement function wy, ). Il satishes the ROMOgENSOUE one-gdimensional undamped wave

equation:

au,=u
whane the constant coeflicient & is given u:lhu formula & = Tip, such hat @ = horzontal propagation
gpeed (also known as phase valocily) of he wave molion, T = forca of lension axarad on the siring,
p = Mass density (mass per unit lengih). 11 1s subjected o Ihe homogenecus boundary conditions
0, =0, and KL t)=0,1>0
The two boundary conditions reflect thal the two ends of the string are clamped in fized positions,
Theredfore, they are held mationless at all time.
The aguation comes with 2 initial conditions, due 1o the lact thal it conlains the second partial
derivative tarm b, The two inilial conditions are the u (v, ). both are arbitrary functions of v alore,
{Mote that the siring is vibrates. verlically, inplace. The resulling wave lorm, of 1he wive likex "shapa®
of the string, 15 whal moves horizontally, )
Orsn=dlinmwsrtainge
Hifrasgn e ugdunmnﬂmw dequainlion
mu,= IJ‘.

120 Displacomont =L
ulx, 1)
L T ¥
Hence, what wa have is the following inibal-boundary value problem:
(wave equation) gy, = Uy, Dex<L.1>0
(Boundary conditions) (0, 1) = 0, and ull, =0,
(Initial conditions) ulx,0) = fiz),and  wlx, D) = glx)

We firstlat wix, 1) = X(x} T(t) and separale the wave equalion into two ordinary differential equations.
Substituling u,, = X" Tand u, = XT" into the wave equation, It bacomes

EXT=XT"

Dividing both sides by &* AT
x_T
X &7

As for the heat conduction equatan, it is customary 10 consider the constant a? as a lunction of fand
group it with the rast of erms. Insart the constant ol separation and braak apart the aquation:

cor.

X aT

%ra & X =X = X 4+AX=0
0y - T = -AT =T"+8°AT=0

R LS AR A AR AL LI ]
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The boundary conditions also separaie,
w0 =0= X0} T =0 = X(0}=0 o MH=0
pLii=0= X[L) =0 = X{L)=0 o =0
Az usual, in order to obtain nontrivial selutlons, we need 1o chooze X(0) = Dand X(L) = 0 as tha naw
boundary conditions. The resull, altter separation of variables, is the lolipwing ssmultaneous sysiam
of orcénary differential equations, with & set of boundary conditions:
X"+ dxX=0 X0=0 and XL)=0
+a@kT=0
The nexl slep is to solve the elgen vatue problem:
X"+ hX=0, XM0)=0 and XL)=0D
The solutions ara given by laking A negative

Eiganvalues: A= ni—.:? =1, 2. 3.
Eigen functions: Xo= sm”—F o P . (R

Next. substitute the eigen values found above into the second equation to find T(t). After putting
eigen values & info it, the equation of Thecomes

54
a5 1 20
Lq"‘
it is a second order homogeneous linear equation with constant coefficients. It's characteristic have
a pair of purely imaginary complex conjugate roots:
= o

L
Thus, the solutions are simple harmonic:

Tl = Aﬂ:usf’-’}_‘im sm%’“ n=1,2.3. ..

Muttiphying each pair of X_and 7 tagether and sum them up, we find the genaral solution of the one-
dimensional wave equation, with both ends fixed. to be

uix, 1) = Z .-ﬂ|.1r.:|3:s§"—"‘-':JE +8 mnamﬂ}s L

fi=l

There are two sets of (infinitely marny) arbitrary eoefficients. Wa can solve for them using the wo
initial conditions.

Set t = Dand apply the firstinitial condition, the initial (vertical) displacement of the string uix, 0) = fix),
we have

ulx, 0) = E{A cos(0)+ B, sln{ﬂ:ljmnT

i ,ahsin”“_r_". = f(x}
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e

Theratore, we Sea 1hal the mitial displaceman N ) nesds to be a Fourier sine senes. Since flx) can be
an artitrary lunchon, this usually means that we need 1o expand it into s odd penodic extension (of
paricd 2L). the coefficients A are than faund by the relation 4_ = b where b, are the earesponding
Fourigd sine coethiciants &l Hx) Thatis

MRk

a L
"qn e hl'. =: I!I‘TT]EH‘I 1- -z

Notice ihat Ihe entire sequenca of tha coefficients A_are determined exactly by the inftial displacement.
Thay are campletely independant of the other sequence B . which are determined solely by the

sacond initial condition. the initial (vertical) velocity of the string. Ta find B,, we diffarentiate u(s, 1)
with respect o | apply the inilial velocity, ufx, 0) = glx).

I.Jll:.1, [y= z ._,qﬂﬂshf"."f' +Hr| aﬂfmgﬂ”“ ng
Hal L L |I— L

Sel = 0 and equate it with g(x).

L
We THIH lna1_g{:1 needs also be a Fourier sine series. Expand it into its odd periadic extension
(period ZL). if necessary. Once gix) is writen into a sine series, The previous equation becomes

ulr. ) = ZEL? s-in"% = glxl= i b, sinﬂii

e

Uir. 0) = i B. et 5iM ﬂn}:f = g{x)
nat

Compare the cosfficients of the like sine terms. we sea

anm L
5% - b Lz

e

As we have seen, half of the particular solution is detarmined oy the initial displacemant, 1he other
nalf by the inilial velocity. The two halves are determined independent of sach othar. Hence, il the
inifial displacement f(x) = 0, then all A.=0and vz !} contains no sine-terms of ¢ If the initial
velocity gix) = 0, then all 8, = 0 and uix, ) contains no cosine-terms of |

Latus take another look and summarize the resull for these 2 easy special cases. wnen ather flx) or
gx)is 2ero.

L 2 L . X
Therelone, = —~h om il
B8, o b, gg{.r:lsll'l T dx

Special case |: Non-zero initial displacement, zero initial velocity: fix)=0, glz) =0,
ince gix) = 0, then B, = 0 for all n.

L
£ Mmx
Aﬂ = E!F[I:IS‘“TﬂI.' n=1, Er . ...
Theretore, uls, ) = XA, Eﬂﬂal_ﬂﬂinﬂ?_‘{
=1
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ILLUSTRATIVE EXAMPLES
Example:
Solve the one-dimensional wave problem. )
By = U Decx=<h 1=l
w0, N =0 and w5 n=>0
wlx, 1) = dsinlnx ) - san(2nx j— Imin{5mx ).
'UIJ[-"H D) =0.
Solution:

First note that & =9 (s0, a=3). and L =15
The general solution is, therafore,

3 ! 3ot | MR
uix, f) = Z[A.-,EGEET_L+ B, 8in=—¢— ]EIII‘I

e hat ux, 0) =
Since gix) = 0, it mus! be thatall B, = UWep_u—*.!naﬂdEnlmdA Wa also see that ulx, 0) = )

cor i
i3 akready in the form of a Fourier sing Senes. Therefore, we just need to extract the Cormesponding

Fourier sine coefficients:
A, = b, =4
Ay = byg= -1
Agg, = by, = -3,

A = b_= 0, for all other n, na5, 10, or 25.

Hencea, the particular sciullon 15 _ y
ulx, 1)} = dcos(xf) sinjrx) - cos(Brt) sin(2rr) - 3cosl 15n!) sin{Snx)

Example:
Sclve the one-dimensional wave probiem.
Gu, = U, D<x<b =0
w1 =0 and ws =0
pix.0) = 0
ul,f:r, )= 4
Solution:

As in the previous example, 3¥ =9 (so, a=3).and L = 5
Therefore, the general solulion remains

wx, 1) = 21.4,1:05 +r|':':l,,s|nT in—2=

Mow, flx) = 0, consequently all A_ = 0. We just need o find B_. The initial vetocity gix) = 4
a constart function. It is not an odd periodic function. Therefore, we need to expand it into its
odd penodic extension (period T = 10), then eguate it with u {x ). In short:

3wl 3rml ]s nex

2 X
l_g:.l}ﬂ-lﬂ'—d'[ = J45.n_5..d »
y flm
W odd
0. n=even
- 2N 35
Thereione, v t) = V. . . E{En 1:|:|1:; {En 1
i) ,,E,,B{En-uﬂﬂ? 5 5}1“
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. :Vibrating String Problems |
brating string of length L, securety clam

Ped at both egligit
Is describad Dy the homogeneous un Sl -

weight and without damping, dampad
Wave equanon initigl-

boundary value problam:

4 =
a U, =u, O<z<l, >0
ulD. =0, and L. =0,

The general solution js 44,0} = fix), and U lx, 0) = gix)

-

Uz 1) = E[ﬂnmﬂﬁ+ﬂn sinEH.L"':'T]slnf"-“—'Ir
nei 'r- L L

The panticular solution can be found by the formulas:

4,= 2 [f)sin g, anc
L
B = %!QI]EEHE{—JD&
The solution waveiomm has aconstant
of & The vibrating motion has a (verti
string.
Exercisa:
1. Solve the vibrating string problem of the given inilial conditions.
4u“ =u, Dex=<n >0
uiD, f) =0, ur N=0,
(@) ulx, 0) = 12sin(ax) - 16sin(5x) + 24sin(Bx) ; ufx,0) =0,
B) U, 0)=0 ;| ufx 0)=86
() Wz 0)=0 | wuix,0)= 125in{2x) - 16sin{5x) + 24sin(Br)
2.  Solve the vibrating string problem.
100y =u, O<x<2 [0,
w0, =0, U2 f)=0,
ulx, 0) = 32sin(mx) + 62 sin(3mx) + 258in|Bnx),
u,fx, 0} = Bsin(2me) - 18sin{Smx/2)
4.  2olve the wvibrating string problem.
2bu =u, Decx<1, =0,
w0, H=0and 2 =0
wx,0) = x = x?,
ufx.D)=nx
4.  Verify that the D'Alembert solution, uix, f} = [Flx — af) + Fix + af)}/2, where Fix} is an odd
pericdic function of period 2L such that Fx) = f(x) on the interval 0 < x < L, indeed satisfies
the initial-boundary value problem by checking that it satisfies the wave equation, boundary
conditions, and initial conditions.
8t u, = U, Dexel, >0,
w0, ) =0, viL, =0,
ulx, 0) = f{x), ulx, 0) = 0.

{(Horizontal) prnpagaunn speed, in Doth directions of the r-axis,
cal) velocity given by Uplx, 1) at any location 0 < x < | along the

- -f_-.z;f.:'“:?!'fﬁ
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3. Usethe method of saparalion ol variables lo soive the following wave arjuation probiam wharg
Ihe string is rigid. but ot fixed in place, &1 both ends (i.e., 11 is inflexible al the end poinis such
that the siope of displacement curve is always zero at both ends, but the twa ends of the string
are allowed 1o fresly slide in the vertical direction).

EJU":un_ Der<l, 120
u (0,0 =0 ull =0
wir, 0} = fix), uhx, 0} = glv] |

B.  Wnat is the steady-siate displacement of the string in #57 What is lim ulx. 07 Are they the

samea’y

Answers: _
1. (8 ulx. 1) = 12cos(dr) sin(2x) - 16cos(101) sin(Sx) + 24c0s(121) Si{B).
(e) wix, 1) = 3sin(4l) sin(2x) - 1.6sin(101) sin(Ex) + 24sin(121) sin(Ex)

5. (a) The genedal solutionis wx. )= Ay + Bof + :EI A, cos=—* B sin ) }:ns L

The particular solution can be found by the fermulas:
[
ik 25 iy 1 2 mx
= [Hx)dx, A, =]t MY v, By = |giride. and 8, = — |glrjcos——dx
Ay L!ﬁ.ﬂd;. A, L£ (vicos——dx, & Lgﬂfr Elmr-l L

6. The steady-stale displacement is the constant lerm of the salution, Ay The limit coes nol exisl
unless ulx, ) = Cis a constant function, which happens when fix} = Cand gix) = @, ir which
case ha limit is C. Thay ara not the same atherwise

9.3 THE ONE-DIMENSIONAL HEAT CONDUCTION EQUATION
Cansider a thin bar of langth L, of uniform cross-section and construcied of homogeneous malerial
Suppose thal the side of the bar is perfectly insulaled so no haat transier could otour through it (haat
could possibly stil move into or out of the bar through the two ends of the bar). Thus, the movemen
of heal inside tha bar could occur only in the c-direction. then, the amount of heat content at any
place inside the bar, 0 <x < L, and at any time > 0, s given by the temperature distribution functon
wix, £). It satisfies the homogeneous one-dimensional haat conduction equation:

aE u.r.r - l"'II

Where the constant coafficient o is the tharmo diffusivity of the bar, given by &° = kps. (k = therma
conductivity, p = density, 5 = specilic heal, of the matarial of the bar.)

Insulsted sides
(i hvaal @scaping through the side)

e o o o o B Ay i
g e e D e

=0 r=L |

Insuialed sioe

{no haat escaping through the sida)
Termparakurs

distibution wr, 1}

Further, let us assume that both ends of ihe bar are kepl constantly at 0 degree temperature.

(S AVICIRI NIV | Ll‘y A SJCIRRE L VICIR] N LAY |



MADE EASY Second Order Linear Partial Differential Equations | 523
{Heal conduction equation) g U, = u, D<x<l, >0
(Boundary condions) w0, =0 and WLl =0
(Initial condtion} iy, ) = fix)

9.3.1 ConductionProblem
The genaral solution of the initial-boundary valua problem given by the one-dimansional heat conduciion
modeling a bar thal has both of s ends al 0 degrea. The general solulion &

U, N = EC g o e smm:'r
Setting I = U and applying the initial condition ulx, 0) = f{x), we get
ulx, 0) = E C, sin = f{x)

We know that the above equation says that tha initial condition needs to ba an odd panadic funchion
of period 2L. Since the initial condition could be an arbilrary function, it usually means that we would
need to “force the issue” and expand it inlo an odd periodic function of peried 2L That is

fix) = }:bnsm

L]
Therefore, the particular solution is found by satting all the coefiicienis C, = b_where b 's are the
Fouriar sine coefficients of (or the odd periodic exiension of | tha initial condition f{x):

frx

EL
|,_":_.1 = br,:Eg.fl:_.'r}Elﬂ [ —y

ILLUSTRATIVE EXAMPLES

Example:
aohve the heat conduction protiam,
Bu,=u, O<x<d 120
ull, B =0 and 5, 1) =
ulx, D) = 2sin(ne) - 43in2xx) - gin{5ry)
Solution:
Sinca the standard form of the heat conduction equation a2 u = u, we see thal &° = 8; and we
also note that L = 5. Therelore, the general solution is

ulx, 1) = EE. G eI e I

e

M.y
L

. -Andpfifag . MRX
= 20 i 73

The initlal condition, f(x), is already an odd periodic funclion {notice that it is a Fourier sine

series) of the corract peried T= 20 = 10,
Therefore, no additional calculation is neaded, and all wa need to do is to exiract the corract

Fourier sine coefficients from fix). To wit
Cs= ;=2
Cip = Big =
Ga=bas= 1.
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€, = b, =0, for all ather 1. N # 5, 10, or 25
Herce,

e, 1) = 29I g ) - - BIOFAIB gin(2r) + & 52 1= sin{5mx)
Example:
What will the particular salution be if the indtial
fellowing heat conduction problem:
Bu_ = u, O<z<h, =0
w(0, ) =0 and Ub. 1) =10
e 0)=x

condition is u(x, 0) = x instead? Thatis, solve the

Solution:
Tha Qeneral solution i sill
= 2 . nRx
ulx, ) = E Gﬂ-ﬁr"'"? b Ell'r-—5

=

Theinitial condition i an odd function, butitis nota periodic tunction. Therefore, it needs tq:.u:;a
expanded nto its odd pericdic extension of penod 10(T = 2L). s coefficients are, for

=123, ..

b= -jf{xlsln-r%fdx-gj:smm—dx

5 5
o 52 mex[" -5 it x
= = ——=CE—| =— Cos—2©1x
5{ s 8 L rm:I b ]

E[-;I:ns ﬂz.t + FE":E zin m_.ﬁ__|; ]

2[(-28 !
- E[[Ecna{m}l—ﬂ]— {u—n}] =5 cosm)

10
m "0 o

ﬂ. n=g&ven L
e

The resulting sine sares is (representing the function fix) = x, -6 < x < 5, flx + 10) = f{x]):

”:]_-_zlt.ﬁﬁ 5

The particular solution can then be found by setting each coefiicient, C,, to be the comesponding
=110 1}"* (10}

Fourier sina coefficient of the series above, G, =b, = . Therefore, the particular

solution is

10§ E* akwiis
ulx, 1) = - SR
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teady-State Solution -
m:m cteady-stale solution, v(x). of a heat conduction problem is {ha part of the temperature distribution

¢ niion that is indepandent of tima . It represents he equilibrium temperature distribution. To find it
wa note the fact that it is & function of x alone, yet it has 10 satisfy the heat conduction equation. Since
v = y*and v, = 0, substiluting them into the heat conduction aquation, wa get,

£ |

atyv =0
Divide both sides by a2 and integrata twice with respect to.x, we find that v{x) must be In the form of
adegres 1 pofynomial:
vir) = Ax + B

Then. rewrite the boundary conditions in terms of v: u(0, 1) = wvi0)= T, and u(L, I) = L) = T, Apply
thase 2 conditions to find that:
W)= T, = A0} + B=8 = B=1
Wl)=T,=AL+B=AL+T, = A=(T,-TJL

=T
Theredcre, wx) = IEL—HH

Furthar exarmples of steady-state solutions of the heat conduction egquation:

ILLUSTRATIVE EXAMPLES

Example:

Find wix). given each set of boundary conditions Delow;

1 w0, ) =50, wig =0

2 w0 -4yl =0 u(10 =25

Solution:

1 We are locking for a function of the form vix) = Ac + B that satisfies the given boundary
eonditions, Its derivativa ia than v'(x) = A. The two boundary conditions can be rewritten lo be
w0, t} = v(0) = 50, and wu (6, I} = v'(6) = 0. Hence,

viD)=50=A0)+B=8B = B8=350
viDl=0=A = A=0
Therefora, vix) = Ox + 50 = BD

2 The two boundary conditions can be rewritten be (0] - 4v"(0) = 0, and v'(10) = 25.

Henca, viD)-4viD)=0=(A(0) + B)-4A=-4A+ B

4vi(10)=26=A = A=25
Substiiute A = 25 inte the firel equation 0 =44+ B =100+ B
=5 B=100

Therefore, v(x) = 25z + 100,

9.4 LAPLACE EQUATION FOR A RECTANGULAR REGION

Consider a rectangular of length a and width b, Suppose the top, bottom, and leflt sides border free-
space; while beyond the right side there lies a source of heatigravity/magnatic flux, whoss strength
is given by f{y). The patential function at any paint (x, ¥) within this rectangular region, wix, ¥), is then
describad by the boundary value problam:
(2-dim. Laptace equation) o, + Uy, =0, Ocxead Oeyeh,
(Boundary conditions) uix,0) = 0, and ulk, b) =0,

u{0. ¥} = 0, and ula, b) = fly).

.
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place of T(1). Let ulx, ¥) = X(x) ¥(y) and subsiituting u,, = XY into the wave aquatian, it becomeas

..:.n"-"+ JI:"I""" = DI
XY e-Xy"
Dividing both sides by XV
x-' Fi
Xy

Eﬂpﬂrﬂﬁml |_.||"|||l.|.E. the prm“}ue I'I'IEI-HI"IEEH. il ig more megr;ﬂﬂ1 i danoia the conslant as pl;lsltl".l'ﬂl

instead
X ¥
Lo R P T
X - X
A b - XT=RX = X'-AX=0
X
-¥=;. = Y'=AiY = Y +AY¥=0

The boundary conditions alsa separate
ux.0i=0 = Xx)YQ=0 = X(x)=0 o ¥io) =0
e, b)=D = Xy ¥bi=0 = Xi)=0 o ¥b)=0
uid. =0 = XO)Y()=0 = X(@=0 o ¥y=0
uia. ¥) = fiy) = Xa) ¥yl =fy) = [cannotbesimplified further]
X*-AX=0  X0=0
Y"-L¥=0,  Yl0)=0and ¥(b)=0
Plus the fourth boundary condition, w(a, y) = fy)
The next step is 1o solve the eigen value problem. MNobice that there is another slight difference.
Mamely that this time it is the equation of ¥that gives rise to the two-point boundary value problem
which we need to solva.
¥ 4A¥=0, ¥i0})=0, ¥b)=0

However, except for the fact that the variables is yand the function is Y, rather than yand X respectvaly,
we have already seen this problem bafore {more than once, as a matter of fact : here the constant
L = b). The eigan values of this problem are

et
k= -:“--—Ez—. n=1,23 ..

Their corresponding aigan function arg

. I,
F,,-EH‘ITF~ n=123,..

Once wea have found the eigen values, substitute | into the equation of x. We have the equation,
together with one boundary condition:
e

r-U% oy o0, o) =0,
.b‘“'x Xoy=0

teristic equation, r~ — =0, h =4
Its charac = 0] —bf- a6 realroolg r=1 ™

Hance, the general solution for the egquation of x is
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=

r“.‘y _r“1

Tha single baundary condition gives

Theretore, for o= 1.2, 3,

H[D:l:ﬂ:l::,l+¢‘? E I:'E,=G1

r"l." r'I_I
C,|e® -nP

X

Because of the identity tar the hyperbalic sine funclion

|
SL'I'in':IEI:E 5

the previous expression is often rewritten in terms of hyperbaolic sine;

X = K, amh’T n=1,2,3,

The coeflicients satisly the relation: K, = 2C_

Combining the solutions of the two equations. we get the set of solutions that satisfies the two-
dimansional Laplace equation, given the specified boundary conditions

U ) = K (ly) =K, sin T sin T n=1,2.3, .

ulx, ) = EH sinh Lt - En%

This salution, of course, s specific 1o the set of boundary conditions

ulx, 0) = 0, and ulx, b)) =
Lo, ¥) = 0 and ula, ¥) = iy

To find the particular solution, we will use the fourth boundary condition, namely, Wa, v) = fiy).

ua )= LK, sia'lhE-E-Esinn—;E =1(y)
A=

We have seen this story before. Thera is nathing really new here. the summation above is a sine
sefigs whose Fourner sine coefficients are b, = K sin (anm/b). Tharetore, the above relation says that
the last boundary condition, f{)). must either be an odd periodic function {pariod = 2&), or it needs to
be expanded into ane. Once we have f{y) as a Fourier sina saries, the coefficients K_ of the particular
solution can then be computed:

anm

EI
Ky sinh =5 = by = !I'flly}lainn—:iu'}'

by
Theretore, K= ——= — jfw]sln -Eﬂ'r
sinh— bsinh— 0
b 1]
ILLUSTRATIVE EXAMPLES FROM GATE
. . du 'y
Q.1 The solution of the partial differential equation - :1— 15 of the farm

ia) C:nstkrﬂc,gﬁﬁ by Cﬂg"‘-lm :a|

"Scanned by CamScanner

g



MADE EASY
528 | Engineering Mathematics for GATE and ESE Prelims Y

by ca" [_':19'-‘;'"“"- +Cag |l I
e} cet |C1 cos(Jk fal+C, SJn{—.qI'k_,n"ﬁ:]:gl
te) Csintkn)iC, costJk / oix + C; sin- (JkTal iR ik
Solution: (b)
S “Efﬂ o))
IS df ﬂ.'.':ll
Solution of (i} is

ulr. ) = {Acospx+ Bsin p.r}EB'”J“'

K .H'I_
e G ==
= P=y a '|||1

Putting value of p in eq. (i)
W, fl = [Amﬁ E.‘H bslnh"g;]ﬂa*’

13 - - ]
EI‘IEI +|5‘_|‘“--: E‘ﬂj_a 'll'l

= Cg¥| A 5 + 5

3

- oot ete® ["" ;E}m'\"&‘ {ﬂ”

2

= Cg" G.E'EI + EEE-‘IE:]

; 2P 3P _¥P _3P 3P
Q.2 The of partial differential equation e 43—t 2—-—=015
RS [ B R il
(a) eliptic ib) parabolic
(c) hyperbolic id) mone of these
[CE, 2016 : 1 Mark, Set-1]

Solution: (c)
Comparing the given equation with ihe general torm of second order partial differertial equation,
wahave A=1,B=s3 C=s1=2B?-4AC =50
: PDE is Hyperbola.
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